Bending light with better precision

August 15, 2011

Physicists from the University of California at San Diego (UCSD) have demonstrated a new technique to control the speed and direction of light using memory metamaterials whose properties can be repeatedly changed. A metamaterial is a structure engineered from a variety of substances that, when put together, yield optical properties that do not exist in nature. In this experiment, the metamaterial in use is a hybrid device made of split ring resonators (SRRs) - gold rings with a chunk taken out of one side - over a thin layer of vanadium dioxide (VO2). By applying a pulse of electricity to this SRR-VO2 hybrid, the physicists can create a temperature gradient along the device that selectively changes the way the material interacts with light - changing the light's speed and direction, for example, or how much light is reflected or absorbed at each point along the device. The material even "remembers" these changes after the voltage is removed. In a paper published in the AIP's Applied Physics Letters, the UCSD team - in collaboration with researchers from Duke University in Durham, N.C., and the Electronics and Telecommunications Research Institute (ETRI) in South Korea - applied this gradient-producing principle to show that it's possible to modify the way that light interacts with a metamaterial on the order of a single wavelength for 1-terahertz-frequency radiation. Being able to tune metamaterial devices at this level of precision - repeatedly, as required, and after the metamaterial has been fabricated - opens the door to new techniques, including the ability to manufacture Gradient Index of Refraction (GRIN) devices, that can be used for a variety of imaging and communication technologies.
-end-
Article: "Reconfigurable Gradient Index Using VO2 Memory Metamaterials" is published in Applied Physics Letters.

Authors: M.D. Goldflam (1), T. Driscoll (1, 2), B. Chapler (1), O. Khatib (1), N. Marie Jokerst (2), S. Palit (2), D.R. Smith (2), Bong-jun Kim (3), Gi-wan Seo (4), Hyun-Tak Kim (3, 4), M. Di Ventra (1), and D.N. Basov (1).

(1) University of California, San Diego
(2) Duke University
(3) Electronics and Telecommunications Research Institute, Republic of Korea
(4) University of Science and Technology, Republic of Korea

American Institute of Physics

Related Metamaterial Articles from Brightsurf:

Trapping tiny particles: A versatile tool for nanomanipulation
Researchers at the Okinawa Institute of Science and Technology Graduate University have developed a novel device for single nanoparticle trapping, which has potential applications for drug discovery, disease monitoring, biomedical imaging, and more.

First confirmation of new theory by metamaterial
Physicists in W├╝rzburg have experimentally demonstrated a novel effect for the first time by exploiting topological metamaterials.

Broadband enhancement relies on precise tilt
If a photon source could be placed on a single chip and made to produce photons at a high rate, this could enable high-speed quantum communication or information processing.

Virtualized metamaterials opens door for acoustics application and beyond
Scientists from the Hong Kong University of Science and Technology (HKUST) have realized what they called a virtualized acoustic metamaterial, in digitizing material response to an impulse response stored in a software program.

BU researchers design 'intelligent' metamaterial to make MRIs affordable and accessible
Boston University researchers have developed a new, 'intelligent' metamateria l-- which costs less than ten bucks to build -- that could revolutionize magnetic resonance imaging (MRI), making the entire MRI process faster, safer, and more accessible to patients around the world.

Machine learning finds new metamaterial designs for energy harvesting
Electrical engineers at Duke University have harnessed the power of machine learning to design dielectric (non-metal) metamaterials that absorb and emit specific frequencies of terahertz radiation.

New metamaterial morphs into new shapes, taking on new properties
Electrochemical reactions drive shape change in new nanoarchitected metamaterial.

Researchers demonstrate first all-metamaterial optical gas sensor
At FiO + LS conference, researchers will discuss the first fully integrated, non-dispersive infrared (NDIR) gas sensor enabled by specially engineered synthetic materials known as metamaterials.

NUS 'smart' textiles boost connectivity between wearable sensors by 1,000 times
Researchers from the National University of Singapore have incorporated metamaterials into conventional clothing to dramatically improve signal strength between wearable electronic devices.

BU researchers develop new metamaterial that can improve MRI quality and reduce scan time
New magnetic metamaterial could be used as an additive technology to increase the imaging power of lower-strength MRI machines, increasing the number of patients seen by clinics and decreasing associated costs, without any of the risks that come with using higher-strength magnetic fields.

Read More: Metamaterial News and Metamaterial Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.