Nav: Home

Wiring reconfiguration saves millions for Trinity supercomputer

August 15, 2016

LOS ALAMOS, N.M., August 15, 2016-- A moment of inspiration during a wiring diagram review has saved more than $2 million in material and labor costs for the Trinity supercomputer at Los Alamos National Laboratory.

The Laboratory's High Performance Computing (HPC) facilities team, led by Data Center Manager Ron Velarde of HPC-Design (HPC-DES). discovered the potential to re-engineer Cray's initial wiring diagram for the power feed to Trinity's computing racks. As a result, the facilities team was able to perform a redesign, approved by Cray and the Laboratory, that ultimately saved the Lab an estimated $2.6 M in material and labor costs. Sandia National Laboratories adopted this redesign for their Trinity-like systems and Lawrence Berkeley National Laboratory is considering it as well.

"My team and I are always looking to improve engineering means and methods for supercomputer installations in our data centers," said Velarde.

Trinity, Los Alamos's latest major high-performance computer, is designed to provide increased computational capability for the NNSA Nuclear Security Enterprise in order to improve geometric and physics accuracy in calculations that can be completed in weeks -- not years.

The facilities team also used prefabricated copper tray cable rather than fabricating the 22,000 feet of cables on site, which was the plan originally proposed for the project. For high-performance computing systems in the Laboratory Data and Communications Center (LDCC), where power cables are being routed over the computers for the first time, the facilities team worked with the Lab's electrical standards personnel to approve new aluminum power cables, saving 20 percent in materials cost and a factor of three in weight. This pioneering use of aluminum is also expected to generate cost and weight savings in other areas of the Laboratory in addition to the high-performance computing data centers.

The Trinity Phase 1 system, based on the Haswell processor, is currently performing simulations. The Trinity Phase 2 system, based on the Knight's Landing processor, is being delivered this summer. As an example of the scales involved, Phase 2 of the Trinity system, which began to arrive in June, weighs just under 100 tons. Trinity in its completed form will weigh about 175 tons and contain twelve miles of copper cable and 44 miles of optical cable. More 16,000 gallons of water will circulate in the inner process loop to cool Trinity at a flow rate of around 10,000 gallons per minute.

The team and the funding

The team that performed the work includes Velarde, Andres Borrego, Michael Ferguson, Alynna Montoya-Wiuff, Eloy Romero, and Loren Serna, all of the Los Alamos HPC-DES group. The NNSA and Advanced Simulation and Computing (ASC) Program funded the work, which supports the Lab's Nuclear Deterrence mission area and the Integrating Information, Science and Technology for Prediction science pillar.
-end-
About Los Alamos National Laboratory

Los Alamos National Laboratory, a multidisciplinary research institution engaged in strategic science on behalf of national security, is operated by Los Alamos National Security, LLC, a team composed of Bechtel National, the University of California, BWXT Government Group, and URS, an AECOM company, for the Department of Energy's National Nuclear Security Administration.

DOE/Los Alamos National Laboratory

Related Aluminum Articles:

Researchers can now place single ions into solids
New technique enables implantation of individual ions into crystals with an accuracy of 35 nanometers.
MIT engineers develop 'blackest black' material to date
MIT engineers have cooked up a material made of carbon nanotubes that is 10 times blacker than anything that has previously been reported.
A new manufacturing process for aluminum alloys
Using a novel Solid Phase Processing approach, a research team at Pacific Northwest National Laboratory eliminated several steps that are required during conventional extrusion processing of aluminum alloy powders, while also achieving a significant increase in product ductility.
Aluminum is the new steel: NUST MISIS scientists made it stronger than ever before
Aluminum is one of the most promising materials for aeronautics and automobile industry.
ALMA discovers aluminum around young star
Researchers using ALMA data discovered an aluminum-bearing molecule for the first time around a young star.
More Aluminum News and Aluminum Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Erasing The Stigma
Many of us either cope with mental illness or know someone who does. But we still have a hard time talking about it. This hour, TED speakers explore ways to push past — and even erase — the stigma. Guests include musician and comedian Jordan Raskopoulos, neuroscientist and psychiatrist Thomas Insel, psychiatrist Dixon Chibanda, anxiety and depression researcher Olivia Remes, and entrepreneur Sangu Delle.
Now Playing: Science for the People

#537 Science Journalism, Hold the Hype
Everyone's seen a piece of science getting over-exaggerated in the media. Most people would be quick to blame journalists and big media for getting in wrong. In many cases, you'd be right. But there's other sources of hype in science journalism. and one of them can be found in the humble, and little-known press release. We're talking with Chris Chambers about doing science about science journalism, and where the hype creeps in. Related links: The association between exaggeration in health related science news and academic press releases: retrospective observational study Claims of causality in health news: a randomised trial This...