Nav: Home

Researchers sequence genome of tobacco hornworm

August 15, 2016

MANHATTAN, KANSAS -- A Kansas State University-led international team has sequenced the genome of the tobacco hornworm - a caterpillar species used in many research laboratories for studies of insect biology.

Michael Kanost, Kansas State University distinguished professor of biochemistry and molecular biophysics, led the team of 114 researchers from 50 institutions and 11 countries. Gary Blissard of the Boyce Thompson Institute at Cornell University is the co-senior author.

The researchers have published their work "Multifaceted biological insights from a draft genome sequence of the tobacco hornworm moth, Manduca sexta" in the journal Insect Biochemistry and Molecular Biology. The scientists have made the genome sequence available to the public through the National Agricultural Library.

"This project represents years of collaborative research across the world," said Kanost, who studies insect immune systems. "We wanted to provide these valuable data to scientists, and our hope is that this sequenced genome will stimulate new research in molecular studies of insects."

The tobacco hornworm, or Manduca sexta, develops into the Carolina sphinx moth. The name Manduca comes from the Latin word for glutton because these caterpillars eat so much. Manduca sexta occurs naturally in North, Central and South America and is a known pest to gardeners: It eats the leaves of tomato plants and also can be found on pepper, eggplant and potato plants. Crops and weeds from this plant family, which includes tobacco, produce chemicals such as nicotine that deter feeding by most insects, but not Manduca sexta, which makes its physiology especially interesting to scientists.

The sequenced genome can lead to improved molecular biology, physiology and neurobiology research in insects and also may help in developing future new methods for insect pest management. The tobacco hornworm is a good model species because its large size -- the caterpillar can measure up to 4 inches long -- makes it easy to gather tissue samples.

"Some of the same kind of proteins exist in caterpillar blood and human blood," Kanost said. "These proteins have similar functions in the immune system. By studying mechanisms and molecules, we can look at the similarities and differences between caterpillars and humans in how immunity functions and evolves."

Kanost has studied the tobacco hornworm for decades, and he and Blissard decided to start the collaborative project to sequence the tobacco hornworm's genome in 2009. Kanost's research focuses on proteins in caterpillar's blood and how insects protect themselves against infections.

Collaboratively, the research team sequenced the DNA that encodes the genes as well as the RNA from the insect at different developmental stages to identify when different genes are expressed and in which tissues and organs.

Kanost and the Kansas State University research team prepared and purified the DNA of the tobacco hornworm and sent the samples to the Baylor College of Medicine Human Genome Sequencing Center in Houston, which performed the genome sequencing.

The international team used a common computer system so that the researchers from around the world could analyze the gene sequences based on their areas of expertise. By combining their specialties, the researchers created the official gene set.

Now that the genome has been sequenced, Kanost and collaborators can use proteomics to identify proteins in the caterpillar's blood and other tissues.

"We're continuing to study the immune system and the proteins that make the exoskeleton," Kanost said. "Now it is easier to identify the proteins using the gene sequences, and we can use the gene sequences to make insect proteins in bacteria for biochemical studies."
-end-
Other Kansas State University researchers involved in the project included Susan Brown, university distinguished professor of biology; Rollie Clem, professor of biology; William Bryant, research assistant professor in biology; Neal Dittmer, research assistant professor of biochemistry and molecular biophysics; Subbaratnam Muthukrishnan, university distinguished professor emeritus of biochemistry and molecular biophysics; Lorena Passarelli, professor of biology; Yoonseong Park, professor of entomology; Nicolae Herndon, doctoral graduate in computer science; Jayne Christen, doctoral graduate and former postdoctoral research associate in biochemistry and molecular biophysics; and Di Wu, former postdoctoral research associate in biochemistry and molecular biophysics.

The project received financial support from the National Institutes of Health and the Defense Advanced Research Projects Agency, or DARPA.

Kansas State University

Related Immune System Articles:

Using the immune system as a defence against cancer
Research published today in the British Journal of Cancer has found that a naturally occurring molecule and a component of the immune system that can successfully target and kill cancer cells, can also encourage immunity against cancer resurgence.
First impressions go a long way in the immune system
An algorithm that predicts the immune response to a pathogen could lead to early diagnosis for such diseases as tuberculosis
Filming how our immune system kill bacteria
To kill bacteria in the blood, our immune system relies on nanomachines that can open deadly holes in their targets.
Putting the break on our immune system's response
Researchers have discovered how a tiny molecule known as miR-132 acts as a 'handbrake' on our immune system -- helping us fight infection.
Decoding the human immune system
For the first time ever, researchers are comprehensively sequencing the human immune system, which is billions of times larger than the human genome.
Masterswitch discovered in body's immune system
Scientists have discovered a critical part of the body's immune system with potentially major implications for the treatment of some of the most devastating diseases affecting humans.
How a fungus can cripple the immune system
An international research team led by Professor Oliver Werz of Friedrich Schiller University, Jena, has now discovered how the fungus knocks out the immune defenses, enabling a potentially fatal fungal infection to develop.
How the immune system protects us against bowel cancer
Researchers from Charité - Universitätsmedizin Berlin have discovered a protective mechanism which is used by the body to protect intestinal stem cells from turning cancerous.
How herpesviruses shape the immune system
DZIF scientists at the Helmholtz Zentrum München have developed an analytic method that can very precisely detect viral infections using immune responses.
The immune system's fountain of youth
Helping the immune system clear away old cells in aging mice helped restore youthful characteristics.
More Immune System News and Immune System Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Rethinking Anger
Anger is universal and complex: it can be quiet, festering, justified, vengeful, and destructive. This hour, TED speakers explore the many sides of anger, why we need it, and who's allowed to feel it. Guests include psychologists Ryan Martin and Russell Kolts, writer Soraya Chemaly, former talk radio host Lisa Fritsch, and business professor Dan Moshavi.
Now Playing: Science for the People

#538 Nobels and Astrophysics
This week we start with this year's physics Nobel Prize awarded to Jim Peebles, Michel Mayor, and Didier Queloz and finish with a discussion of the Nobel Prizes as a way to award and highlight important science. Are they still relevant? When science breakthroughs are built on the backs of hundreds -- and sometimes thousands -- of people's hard work, how do you pick just three to highlight? Join host Rachelle Saunders and astrophysicist, author, and science communicator Ethan Siegel for their chat about astrophysics and Nobel Prizes.