Nav: Home

How shaping light can change particle behavior

August 15, 2016

Light can take many different forms. Even in our day-to-day life, sunlight is vastly different from fluorescent light. In physics, when studying interactions between light and tiny particles, the shape of the light can make a big difference. Scientists from Okinawa Institute of Science and Technology Graduate University (OIST) and collaborators at the University of Innsbruck in Austria found that the interactions between particles trapped in light distributed along an optical microfiber, as well as the speed of particle movement were different based on the light's characteristics. The results were recently published in Scientific Reports.

Distributing light across an optical microfiber is used as a way to manipulate tiny particles for a variety of possible applications not only in the world of physics, but also biology. There are two main ways to work with light and optical microfibers: in the fundamental mode and the higher order mode. The fundamental mode is the basic light shape where the energy is strongest in the middle of the beam of light and fades at the edges. If the light is any other shape, it can be classified as a higher order mode, which can be created by shining the light through a certain type of crystal.

The OIST team had previously found that the use of higher order modes trapped and moved single particles more rapidly than the fundamental mode. This time, they looked more closely at the differences between particle interactions and speed changes when dealing with more than one particle, in the fundamental or the higher order mode. When there are multiple particles trapped in the light surrounding an optical microfiber, they align in a specific order, which is called the optical binding effect.

To explore these particle interactions, the researchers trapped up to five particles using optical tweezers. They then moved the particles towards the optical microfiber and released them into the light field around the microfiber. The team measured the speed at which the particles were traveling along the microfiber.

"We did measurements for both fundamental and higher order modes," Aili Maimaiti, OIST Special Research Student and first author said. "We found that higher order modes had a different effect on the particles. In higher order modes, the collective particle speed slows down when more particles are added, while the opposite is true for the fundamental mode."

They also calculated the distance between multiple particles as they moved. They did this calculation each time they added a particle up to the maximum of five particles. The team found that the particles farther from the light source have a smaller space in between them - or interparticle distance - but as you move closer to the light source, the space is larger. When they looked at the differences between fundamental and higher order modes, they found that the interparticle distance was smaller in higher order modes.

"This is proof that the binding effect is different under the higher order mode," Maimaiti said.

The researchers developed a theoretical model that supported the experimental findings. The model explained that the particles act as mirrors that reflect and transmit the light in which they are trapped and this causes their interaction.

They highlighted the importance of understanding these interactions between particles trapped in light. Physical phenomena, such as particle behavior in higher order modes not only allows for better control of the particle positions, but additionally could be useful in studying quantum effects with chains of atoms in 1D crystal-like structures.

Okinawa Institute of Science and Technology (OIST) Graduate University

Related Physics Articles:

Twisted physics
A new study in the journal Nature shows that superconductivity in bilayer graphene can be turned on or off with a small voltage change, increasing its usefulness for electronic devices.
Physics vs. asthma
A research team from the MIPT Center for Molecular Mechanisms of Aging and Age-Related Diseases has collaborated with colleagues from the U.S., Canada, France, and Germany to determine the spatial structure of the CysLT1 receptor.
2D topological physics from shaking a 1D wire
Published in Physical Review X, this new study propose a realistic scheme to observe a 'cold-atomic quantum Hall effect.'
Helping physics teachers who don't know physics
A shortage of high school physics teachers has led to teachers with little-to-no training taking over physics classrooms, reports show.
Physics at the edge
In 2005, condensed matter physicists Charles Kane and Eugene Mele considered the fate of graphene at low temperatures.
Using physics to print living tissue
3D printers can be used to make a variety of useful objects by building up a shape, layer by layer.
When the physics say 'don't follow your nose'
Engineers at Duke University are developing a smart robotic system for sniffing out pollution hotspots and sources of toxic leaks.
The coming of age of plasma physics
The story of the generation of physicists involved in the development of a sustainable energy source, controlled fusion, using a method called magnetic confinement.
Physics: Not everything is where it seems to be
Scientists at TU Wien, the University of Innsbruck and the ÖAW have for the first time demonstrated a wave effect that can lead to measurement errors in the optical position estimation of objects.
'Fudge factors' in physics?
What if your theory to model and predict the electronic structure of atoms isn't accounting for dispersion energy?
More Physics News and Physics Current Events

Top Science Podcasts

We have hand picked the top science podcasts of 2019.
Now Playing: TED Radio Hour

Why do we revere risk-takers, even when their actions terrify us? Why are some better at taking risks than others? This hour, TED speakers explore the alluring, dangerous, and calculated sides of risk. Guests include professional rock climber Alex Honnold, economist Mariana Mazzucato, psychology researcher Kashfia Rahman, structural engineer and bridge designer Ian Firth, and risk intelligence expert Dylan Evans.
Now Playing: Science for the People

#541 Wayfinding
These days when we want to know where we are or how to get where we want to go, most of us will pull out a smart phone with a built-in GPS and map app. Some of us old timers might still use an old school paper map from time to time. But we didn't always used to lean so heavily on maps and technology, and in some remote places of the world some people still navigate and wayfind their way without the aid of these tools... and in some cases do better without them. This week, host Rachelle Saunders...
Now Playing: Radiolab

Dolly Parton's America: Neon Moss
Today on Radiolab, we're bringing you the fourth episode of Jad's special series, Dolly Parton's America. In this episode, Jad goes back up the mountain to visit Dolly's actual Tennessee mountain home, where she tells stories about her first trips out of the holler. Back on the mountaintop, standing under the rain by the Little Pigeon River, the trip triggers memories of Jad's first visit to his father's childhood home, and opens the gateway to dizzying stories of music and migration. Support Radiolab today at