Biomarker breakthrough could improve Parkinson's treatment

August 15, 2016

A new, non-invasive way to track the progression of Parkinson's disease could help evaluate experimental treatments to slow or stop the disease's progression.

University of Florida researchers used functional magnetic resonance imaging to reveal areas where Parkinson's disease and related conditions cause progressive decline in brain activity.

The study, funded by the National Institutes of Health, was published in the journal Neurology.

While current treatments focus on controlling symptoms, biomarkers provide a quantifiable way to measure how medications address not just symptoms, but the neurological changes behind them.

Previous studies have used imaging techniques that require the injection of a drug that crosses the blood-brain barrier.

"Our technique does not rely upon the injection of a drug. Not only is it non-invasive, it's much less expensive," said David Vaillancourt, Ph.D., a professor in UF's Department of Applied Physiology and Kinesiology and the study's senior author.

The study's authors - which included researchers from UF's College of Health and Human Performance and College of Medicine as well as the Medical University of South Carolina - used functional magnetic resonance imaging to evaluate five areas of the brain that are key to movement and balance. A year after the baseline study, the 46 Parkinson's patients in the study showed declining function in two areas: the primary motor cortex and putamen. Parkinson's-related disorders evaluated in the study also showed declines: The 13 subjects with multiple system atrophy had reduced activity in three of the five areas, while the 19 with progressive supranuclear palsy showed declines in all five areas. The brain activity of the 34 healthy control subjects did not change.

"For decades, the field has been searching for an effective biomarker for Parkinson's disease," said Debra Babcock, M.D., Ph.D., program director at the NIH's National Institute of Neurological Disorders and Stroke. "This study is an example of how brain imaging biomarkers can be used to monitor the progression of Parkinson's disease and other neurological disorders."

The finding builds on a 2015 UF study that was the first to document progressive deterioration from Parkinson's via MRI, showing an increase in unconstrained fluid in an area of the brain called the substania nigra. An NIH-funded study beginning in November will use both biomarkers to test if a drug approved for symptom relief can slow or stop progressive degeneration.

Katrina Gwinn, M.D., also a program director at the NIH's National Institute of Neurological Disorders and Stroke, described the effort to identify biomarkers as "an essential part of moving towards the development of treatments that impact the causes, and not just the symptoms, of Parkinson's disease."
-end-


University of Florida

Related Brain Articles from Brightsurf:

Glioblastoma nanomedicine crosses into brain in mice, eradicates recurring brain cancer
A new synthetic protein nanoparticle capable of slipping past the nearly impermeable blood-brain barrier in mice could deliver cancer-killing drugs directly to malignant brain tumors, new research from the University of Michigan shows.

Children with asymptomatic brain bleeds as newborns show normal brain development at age 2
A study by UNC researchers finds that neurodevelopmental scores and gray matter volumes at age two years did not differ between children who had MRI-confirmed asymptomatic subdural hemorrhages when they were neonates, compared to children with no history of subdural hemorrhage.

New model of human brain 'conversations' could inform research on brain disease, cognition
A team of Indiana University neuroscientists has built a new model of human brain networks that sheds light on how the brain functions.

Human brain size gene triggers bigger brain in monkeys
Dresden and Japanese researchers show that a human-specific gene causes a larger neocortex in the common marmoset, a non-human primate.

Unique insight into development of the human brain: Model of the early embryonic brain
Stem cell researchers from the University of Copenhagen have designed a model of an early embryonic brain.

An optical brain-to-brain interface supports information exchange for locomotion control
Chinese researchers established an optical BtBI that supports rapid information transmission for precise locomotion control, thus providing a proof-of-principle demonstration of fast BtBI for real-time behavioral control.

Transplanting human nerve cells into a mouse brain reveals how they wire into brain circuits
A team of researchers led by Pierre Vanderhaeghen and Vincent Bonin (VIB-KU Leuven, Université libre de Bruxelles and NERF) showed how human nerve cells can develop at their own pace, and form highly precise connections with the surrounding mouse brain cells.

Brain scans reveal how the human brain compensates when one hemisphere is removed
Researchers studying six adults who had one of their brain hemispheres removed during childhood to reduce epileptic seizures found that the remaining half of the brain formed unusually strong connections between different functional brain networks, which potentially help the body to function as if the brain were intact.

Alcohol byproduct contributes to brain chemistry changes in specific brain regions
Study of mouse models provides clear implications for new targets to treat alcohol use disorder and fetal alcohol syndrome.

Scientists predict the areas of the brain to stimulate transitions between different brain states
Using a computer model of the brain, Gustavo Deco, director of the Center for Brain and Cognition, and Josephine Cruzat, a member of his team, together with a group of international collaborators, have developed an innovative method published in Proceedings of the National Academy of Sciences on Sept.

Read More: Brain News and Brain Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.