A moth and its flame: Mate selection found to evolve from response to flower odors

August 15, 2017

For moths, love is literally in the air through the action of pheromones to attract mates.

Virgin females release a perfumery concoction, specially blended to attract males from the same species, even over long distances.

To date, little is known on how males evolved to heed their siren's call.

In general, pheromone compounds in moths and other insects are detected by specialized receptors that generally do not respond to plant volatiles.

Pheromones and other odorants are detected by odorant receptors (ORs) expressed in olfactory sensory neurons found most prominently within the insect antennae.

In moths, there are four major groups of pheromones classified by their chemistry and how the compounds are biosynthesized. The pheromones of old moth lineages, Type 0, are thought to represent the ancestral state of moth pheromones. Type 0 pheromones all have short carbon chains and they are remarkably similar to many common plant volatiles.

Now for the first time, Jothi Yuvaraj and colleagues at Lund University, Sweden, have identified the corresponding pheromone receptors (PRs) from a primitive leafminer moth, called Eriocrania semipurpurella.

Then, they show that these receptors also respond to plant odors and propose a scenario in which pheromone receptors evolved from plant odor receptors.

"Our results suggest that PRs for Type 0 pheromones have evolved from ORs that detect structurally-related plant volatiles," said professor Christer Löfstedt. "They are unrelated to PRs detecting pheromones in advanced Lepidoptera, which, in turn, also independently may have evolved a novel function from ORs detecting plant volatiles."

The authors, therefore, propose that not only have the pheromone receptors of this basal moth evolved from ORs that recognize plant odorants but that the same might be true of the canonical pheromone receptors of more derived moths.

"Our results suggest that sex pheromone receptors in Lepidoptera have evolved sex pheromone detecting functions from ORs detecting plant volatiles on multiple occasions," said Jothi Yuvaraj.

The new study advances our understanding of the evolution of moth pheromone sensory systems in general and primitive moths in particular.
-end-


Molecular Biology and Evolution (Oxford University Press)

Related Evolution Articles from Brightsurf:

Seeing evolution happening before your eyes
Researchers from the European Molecular Biology Laboratory in Heidelberg established an automated pipeline to create mutations in genomic enhancers that let them watch evolution unfold before their eyes.

A timeline on the evolution of reptiles
A statistical analysis of that vast database is helping scientists better understand the evolution of these cold-blooded vertebrates by contradicting a widely held theory that major transitions in evolution always happened in big, quick (geologically speaking) bursts, triggered by major environmental shifts.

Looking at evolution's genealogy from home
Evolution leaves its traces in particular in genomes. A team headed by Dr.

How boundaries become bridges in evolution
The mechanisms that make organisms locally fit and those responsible for change are distinct and occur sequentially in evolution.

Genome evolution goes digital
Dr. Alan Herbert from InsideOutBio describes ground-breaking research in a paper published online by Royal Society Open Science.

Paleontology: Experiments in evolution
A new find from Patagonia sheds light on the evolution of large predatory dinosaurs.

A window into evolution
The C4 cycle supercharges photosynthesis and evolved independently more than 62 times.

Is evolution predictable?
An international team of scientists working with Heliconius butterflies at the Smithsonian Tropical Research Institute (STRI) in Panama was faced with a mystery: how do pairs of unrelated butterflies from Peru to Costa Rica evolve nearly the same wing-color patterns over and over again?

Predicting evolution
A new method of 're-barcoding' DNA allows scientists to track rapid evolution in yeast.

Insect evolution: Insect evolution
Scientists at Ludwig-Maximilians-Universitaet (LMU) in Munich have shown that the incidence of midge and fly larvae in amber is far higher than previously thought.

Read More: Evolution News and Evolution Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.