Nav: Home

Light-emitting nanoparticles could provide a safer way to image living cells

August 15, 2018

A research team has demonstrated how light-emitting nanoparticles, developed at the U.S. Department of Energy's Lawrence Berkeley National Laboratory (Berkeley Lab), can be used to see deep in living tissue.

The specially designed nanoparticles can be excited by ultralow-power laser light at near-infrared wavelengths considered safe for the human body. They absorb this light and then emit visible light that can be measured by standard imaging equipment.

The development and biological imaging application of these nanoparticles is detailed in a study published online Aug. 6 in Nature Communications.

Researchers hope to further develop these so-called alloyed upconverting nanoparticles, or aUCNPs, so that they can attach to specific components of cells to serve in an advanced imaging system to light up even single cancer cells, for example. Such a system may ultimately guide high-precision surgeries and radiation treatments, and help to erase even very tiny traces of cancer.

"With a laser even weaker than a standard green laser pointer, we can image deep into tissue," said Bruce Cohen, who is part of a science team at Berkeley Lab's Molecular Foundry that is working with UC San Francisco researchers to adapt the nanoparticles for medical uses. The Molecular Foundry is a DOE Office of Science User Facility specializing in nanoscience research - it is accessible to visiting scientists from around the nation and the world.

Cohen noted that some existing imaging systems use higher-power laser light that runs the risk of damaging cells.

"The challenge is: How do we image living systems at high sensitivity without damaging them? This combination of low-energy light and low-laser powers is what everyone in the field has been working toward for a while," he said. The laser power needed for the aUCNPs is millions of times lower than the power needed for conventional near-infrared-imaging probes.

In this latest study, researchers have demonstrated how the aUCNPs can be imaged in live mouse tissue at several millimeters' depth. They were excited with lasers weak enough not to cause any damage.

Researchers injected nanoparticles into the mammary fat pads of mice and recorded images of the light emitted by the particles, which did not appear to pose any toxicity to the cells.

More testing will be required to know whether the aUCNPs produced at Berkeley Lab can be safely injected into humans, and to test coatings Berkeley Lab scientists are designing to specifically bind to cancerous cells.

Dr. Mekhail Anwar, a radiation oncologist and an assistant professor at UC San Francisco who participated in the latest study, noted that there are numerous medical scanning techniques to locate cancers - from mammograms to MRIs and PET-CT scans - but these techniques can lack precise details at very small scales.

"We really need to know exactly where each cancer cell is," said Anwar, a Foundry user who collaborates with Molecular Foundry scientists in his research. "Usually we say you're lucky when we catch it early and the cancer is only about a centimeter - that's about 1 billion cells. But where are the smaller groups of cells hiding?"

Future work at the Molecular Foundry will hopefully lead to improved techniques for imaging cancer using the aUCNPs, he said, and researchers are developing an imaging sensor to integrate with nanoparticles that could be attached to surgical equipment and even surgical gloves to pinpoint cancer hot spots during surgical procedures.

A breakthrough in the Lab's development of UCNPs was in finding ways to boost their efficiency in emitting the absorbed light at higher energies, said Emory Chan, a staff scientist at the Molecular Foundry who also participated in the latest study.

For decades, the research community had believed that the best way to produce these so-called upconverting materials was to implant them or "dope" them with a low concentration of metals known as lanthanides. Too many of these metals, researchers had believed, would cause the light they emit to become less bright with more of these added metals.

But experiments led by Molecular Foundry researchers Bining "Bella" Tian and Angel Fernandez-Bravo, who made lanthanide-rich UCNPs and measured their properties, upended this prevailing understanding.

Studies of individual UCNPs proved especially valuable in showing that erbium, a lanthanide previously thought to only play a role in light emission, can also directly absorb light and free up another lanthanide, ytterbium, to absorb more light. Emory Chan, a staff scientist at the Molecular Foundry who also participated in the latest study, described erbium's newly discovered multitasking role in the UCNPs as a "triple threat."

The UCNPs used in the latest study measure about 12-15 nanometers (billionths of a meter) across - small enough to allow them to penetrate into tissue. "Their shells are grown like an onion, a layer at a time," Chan said.

Jim Schuck, a study participant and former Berkeley Lab scientist now at Columbia University, noted that the latest study builds on a decade-long effort at the Molecular Foundry to understand, redesign, and find new applications for UCNPs.

"This new paradigm in UCNP design, which leads to much brighter particles, is a real game-changer for all single-UCNP imaging applications," he said.

Researchers at the Molecular Foundry will be working on ways to automate the fabrication of the nanoparticles with robots, and to coat them with markers that selectively bind to cancerous cells.

Cohen said that the collaborative work with UCSF has opened new avenues of exploration for UCNPs, and he expects the research effort to grow.

"We never would have thought of using these for imaging during surgeries," he said. "Working with researchers like Mekhail opens up this wonderful cross-pollination of different fields and different ideas."

Anwar said, "We're really grateful to have access to the knowledge and wide array of instrumentation" at the Lab's Molecular Foundry.
Other researchers at Berkeley Lab's Molecular Foundry and at UC Berkeley, UC San Francisco, and Columbia University also participated in this study.

Lawrence Berkeley National Laboratory addresses the world's most urgent scientific challenges by advancing sustainable energy, protecting human health, creating new materials, and revealing the origin and fate of the universe. Founded in 1931, Berkeley Lab's scientific expertise has been recognized with 13 Nobel Prizes. The University of California manages Berkeley Lab for the U.S. Department of Energy's Office of Science. For more, visit

DOE's Office of Science is the single largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit

DOE/Lawrence Berkeley National Laboratory

Related Cancer Articles:

Cancer mortality continues steady decline, driven by progress against lung cancer
The cancer death rate declined by 29% from 1991 to 2017, including a 2.2% drop from 2016 to 2017, the largest single-year drop in cancer mortality ever reported.
Stress in cervical cancer patients associated with higher risk of cancer-specific mortality
Psychological stress was associated with a higher risk of cancer-specific mortality in women diagnosed with cervical cancer.
Cancer-sniffing dogs 97% accurate in identifying lung cancer, according to study in JAOA
The next step will be to further fractionate the samples based on chemical and physical properties, presenting them back to the dogs until the specific biomarkers for each cancer are identified.
Moffitt Cancer Center researchers identify one way T cell function may fail in cancer
Moffitt Cancer Center researchers have discovered a mechanism by which one type of immune cell, CD8+ T cells, can become dysfunctional, impeding its ability to seek and kill cancer cells.
More cancer survivors, fewer cancer specialists point to challenge in meeting care needs
An aging population, a growing number of cancer survivors, and a projected shortage of cancer care providers will result in a challenge in delivering the care for cancer survivors in the United States if systemic changes are not made.
New cancer vaccine platform a potential tool for efficacious targeted cancer therapy
Researchers at the University of Helsinki have discovered a solution in the form of a cancer vaccine platform for improving the efficacy of oncolytic viruses used in cancer treatment.
American Cancer Society outlines blueprint for cancer control in the 21st century
The American Cancer Society is outlining its vision for cancer control in the decades ahead in a series of articles that forms the basis of a national cancer control plan.
Oncotarget: Cancer pioneer employs physics to approach cancer in last research article
In the cover article of Tuesday's issue of Oncotarget, James Frost, MD, PhD, Kenneth Pienta, MD, and the late Donald Coffey, Ph.D., use a theory of physical and biophysical symmetry to derive a new conceptualization of cancer.
Health indicators for newborns of breast cancer survivors may vary by cancer type
In a study published in the International Journal of Cancer, researchers from the UNC Lineberger Comprehensive Cancer Center analyzed health indicators for children born to young breast cancer survivors in North Carolina.
Few women with history of breast cancer and ovarian cancer take a recommended genetic test
More than 80 percent of women living with a history of breast or ovarian cancer at high-risk of having a gene mutation have never taken the test that can detect it.
More Cancer News and Cancer Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: Meditations on Loneliness
Original broadcast date: April 24, 2020. We're a social species now living in isolation. But loneliness was a problem well before this era of social distancing. This hour, TED speakers explore how we can live and make peace with loneliness. Guests on the show include author and illustrator Jonny Sun, psychologist Susan Pinker, architect Grace Kim, and writer Suleika Jaouad.
Now Playing: Science for the People

#565 The Great Wide Indoors
We're all spending a bit more time indoors this summer than we probably figured. But did you ever stop to think about why the places we live and work as designed the way they are? And how they could be designed better? We're talking with Emily Anthes about her new book "The Great Indoors: The Surprising Science of how Buildings Shape our Behavior, Health and Happiness".
Now Playing: Radiolab

The Third. A TED Talk.
Jad gives a TED talk about his life as a journalist and how Radiolab has evolved over the years. Here's how TED described it:How do you end a story? Host of Radiolab Jad Abumrad tells how his search for an answer led him home to the mountains of Tennessee, where he met an unexpected teacher: Dolly Parton.Jad Nicholas Abumrad is a Lebanese-American radio host, composer and producer. He is the founder of the syndicated public radio program Radiolab, which is broadcast on over 600 radio stations nationwide and is downloaded more than 120 million times a year as a podcast. He also created More Perfect, a podcast that tells the stories behind the Supreme Court's most famous decisions. And most recently, Dolly Parton's America, a nine-episode podcast exploring the life and times of the iconic country music star. Abumrad has received three Peabody Awards and was named a MacArthur Fellow in 2011.