Tiny lensless endoscope captures 3D images of objects smaller than a cell

August 15, 2019

WASHINGTON -- Researchers have developed a new self-calibrating endoscope that produces 3D images of objects smaller than a single cell. Without a lens or any optical, electrical or mechanical components, the tip of the endoscope measures just 200 microns across, about the width of a few human hairs twisted together.

As a minimally invasive tool for imaging features inside living tissues, the extremely thin endoscope could enable a variety of research and medical applications. The research will be presented at the Frontiers in Optics + Laser Science (FIO + LS) conference, held September 15-19 in Washington, D.C., U.S.A.

According to Juergen W. Czarske, Director and C4-Professor at TU Dresden, Germany and lead author on the paper: "The lensless fiber endoscope is approximately the size of a needle, allowing it to have minimally invasive access and high-contrast imaging as well as stimulation with a robust calibration against bending or twisting of the fiber." The endoscope is likely to be especially useful for optogenetics - research approaches that use light to stimulate cellular activity. It also could prove useful for monitoring cells and tissues during medical procedures as well as for technical inspections.

A self-calibrating system

Conventional endoscopes use cameras and lights to capture images inside the body. In recent years researchers have developed alternative ways to capture images through optical fibers, eliminating the need for bulky cameras and other bulky components, allowing for significantly thinner endoscopes. Despite their promise, however, these technologies suffer from limitations such as an inability to tolerate temperature fluctuations or bending and twisting of the fiber.

A major hurdle to making these technologies practical is that they require complicated calibration processes, in many cases while the fiber is collecting images. To address this, the researchers added a thin glass plate, just 150 microns thick, to the tip of a coherent fiber bundle, a type of optical fiber that is commonly used in endoscopy applications. The coherent fiber bundle used in the experiment was about 350 microns wide and consisted of 10,000 cores.

When the central fiber core is illuminated, it emits a beam that is reflected back into the fiber bundle and serves as a virtual guide star for measuring how the light is being transmitted, known as the optical transfer function. The optical transfer function provides crucial data the system uses to calibrate itself on the fly.

Keeping the view in focus

A key component of the new setup is a spatial light modulator, which is used to manipulate the direction of the light and enable remote focusing. The spatial light modulator compensates the optical transfer function and images onto the fiber bundle. The back-reflected light from the fiber bundle is captured on the camera and superposed with a reference wave to measure the light's phase.

The position of the virtual guide star determines the instrument's focus, with a minimal focus diameter of approximately one micron. The researchers used an adaptive lens and a 2D galvometer mirror to shift the focus and enable scanning at different depths.

Demonstrating 3D imaging

The team tested their device by using it to image a 3D specimen under a 140-micron thick cover slip. Scanning the image plane in 13 steps over 400 microns with an image rate of 4 cycles per second, the device successfully imaged particles at the top and bottom of the 3D specimen. However, its focus deteriorated as the galvometer mirror's angle increased. The researchers suggest future work could address this limitation. In addition, using a galvometer scanner with a higher frame rate could allow faster image acquisition.

"The novel approach enables both real-time calibration and imaging with minimal invasiveness, important for in-situ 3D imaging, lab-on-a-chip-based mechanical cell manipulation, deep tissue in vivo optogenetics, and key-hole technical inspections," said Czarske.
-end-
"Fast 3D Imaging with Lensless Holographic Endoscopy Employing Coherent Fiber Bundles," by Juergen W. Czarske, Elias Scharf, and Robert Kuschmierz, will be presented Monday, 16 September 2019, at 11:15 a.m. EDT in Room Washington 6 of the Marriott Wardman Park hotel in Washington, D.C.

Award at Frontiers in Optics + Laser Science

Juergen W. Czarske will receive the 2019 Joseph Fraunhofer Award/Robert M. Burley Prize at FiO + LS for achievements in optical engineering. He is honored for seminal contributions to the field of digital interferometric and holographic sensors. Czarske is also a Fellow of OSA, EOS, SPIE, an elected member of Saxon Academy of Sciences and Scientific Society for Laser Technology. He has received the Berthold Leibinger Innovation Prize, the Reinhart Koselleck Project of German Research Foundation, the Measurement Technique Award of AHMT, and many other honors.

Frontiers in Optics

Frontiers in Optics is The Optical Society's (OSA) Annual Meeting and held together with Laser Science, a meeting sponsored by the American Physical Society's Division of Laser Science (DLS). The two meetings unite the OSA and APS communities for five days of quality, cutting-edge presentations, in-demand invited speakers and a variety of special events spanning a broad range of topics in optics and photonics--the science of light--across the disciplines of physics, biology and chemistry. The exhibit floor will feature leading optics companies, technology products and programs.

About The Optical Society

Founded in 1916, The Optical Society (OSA) is the leading professional organization for scientists, engineers, students and business leaders who fuel discoveries, shape real-life applications and accelerate achievements in the science of light. Through world-renowned publications, meetings and membership initiatives, OSA provides quality research, inspired interactions and dedicated resources for its extensive global network of optics and photonics experts. For more information, visit osa.org.

The Optical Society

Related Science Articles from Brightsurf:

75 science societies urge the education department to base Title IX sexual harassment regulations on evidence and science
The American Educational Research Association (AERA) and the American Association for the Advancement of Science (AAAS) today led 75 scientific societies in submitting comments on the US Department of Education's proposed changes to Title IX regulations.

Science/Science Careers' survey ranks top biotech, biopharma, and pharma employers
The Science and Science Careers' 2018 annual Top Employers Survey polled employees in the biotechnology, biopharmaceutical, pharmaceutical, and related industries to determine the 20 best employers in these industries as well as their driving characteristics.

Science in the palm of your hand: How citizen science transforms passive learners
Citizen science projects can engage even children who previously were not interested in science.

Applied science may yield more translational research publications than basic science
While translational research can happen at any stage of the research process, a recent investigation of behavioral and social science research awards granted by the NIH between 2008 and 2014 revealed that applied science yielded a higher volume of translational research publications than basic science, according to a study published May 9, 2018 in the open-access journal PLOS ONE by Xueying Han from the Science and Technology Policy Institute, USA, and colleagues.

Prominent academics, including Salk's Thomas Albright, call for more science in forensic science
Six scientists who recently served on the National Commission on Forensic Science are calling on the scientific community at large to advocate for increased research and financial support of forensic science as well as the introduction of empirical testing requirements to ensure the validity of outcomes.

World Science Forum 2017 Jordan issues Science for Peace Declaration
On behalf of the coordinating organizations responsible for delivering the World Science Forum Jordan, the concluding Science for Peace Declaration issued at the Dead Sea represents a global call for action to science and society to build a future that promises greater equality, security and opportunity for all, and in which science plays an increasingly prominent role as an enabler of fair and sustainable development.

PETA science group promotes animal-free science at society of toxicology conference
The PETA International Science Consortium Ltd. is presenting two posters on animal-free methods for testing inhalation toxicity at the 56th annual Society of Toxicology (SOT) meeting March 12 to 16, 2017, in Baltimore, Maryland.

Citizen Science in the Digital Age: Rhetoric, Science and Public Engagement
James Wynn's timely investigation highlights scientific studies grounded in publicly gathered data and probes the rhetoric these studies employ.

Science/Science Careers' survey ranks top biotech, pharma, and biopharma employers
The Science and Science Careers' 2016 annual Top Employers Survey polled employees in the biotechnology, biopharmaceutical, pharmaceutical, and related industries to determine the 20 best employers in these industries as well as their driving characteristics.

Three natural science professors win TJ Park Science Fellowship
Professor Jung-Min Kee (Department of Chemistry, UNIST), Professor Kyudong Choi (Department of Mathematical Sciences, UNIST), and Professor Kwanpyo Kim (Department of Physics, UNIST) are the recipients of the Cheong-Am (TJ Park) Science Fellowship of the year 2016.

Read More: Science News and Science Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.