Pain, itself, elicits pain relief, and does so through 'reward' pathway

August 15, 1999

Researchers have long known that the body can activate its own form of pain relief in response to painful stimuli. Now, UC San Francisco investigators have determined that, in rats, this long-lasting relief is produced by the brain's "reward" pathway -- the neural circuitry activated by drugs of abuse. In their study, published in the August 15 issue of Journal of Neuroscience, the investigators determined that, at its maximum, the pain relief was as potent as a high dose of morphine.

While various individual structures in the brain have been known to produce analgesia, or pain relief, when electrically stimulated or exposed to narcotic painkillers, the finding provides the first physiological evidence that pain itself elicits analgesia.

It also provides a surprising twist on the perceived workings of the neural circuitry associated with gratification, said the lead author of the study, Robert W. Gear, PhD, assistant clinical professor of Oral and Maxillofacial Surgery in the NIH Pain Center at UCSF.

"We're showing that something aversive -- exposure to a painful stimulus -- as well as exposure to drugs of abuse, stimulate the same reward circuit," said Gear, whose lab is directed by senior author Jon D. Levine, MD, PhD, a professor of Oral and Maxillofacial Surgery and Medicine and director of the NIH Pain Center.

"Our result casts new light on how to look at the key structure in the reward pathway, the nucleus accumbens, and the role it plays in affirming certain behaviors and thus motivating individuals to act in particular ways," said Gear. The reward pathway is a neural network in the middle of the brain that prompts good feelings in response to certain behaviors, such as relieving hunger, quenching thirst or having sex, and it thereby reinforces these evolutionarily important drives. However, the circuit also responds to drugs of abuse, such as heroin, cocaine, amphetamine and nicotine, which seem to hijack the circuitry, altering the behavior of its neurons.

The nucleus accumbens is the engine of the reward response. And, in their study, the UCSF researchers determined that the reward pathway activates pain relief through the release of both opioids, a morphine-like drug produced by the body, and dopamine, a chemical messenger whose effects can be mimicked by amphetamine and cocaine, in this structure. The finding overturns the long-held assumption that the release of dopamine in the nucleus accumbens is associated only with positive experiences.

The evolutionary value of a rush of analgesia is clear, as it could allow, for example, a badly injured individual to escape an attacker. It probably could also explain why some individuals can be injured without persistent pain.

But the phenomenon may also explain why heroin addicts, in withdrawal, can experience pain or increased sensitivity to painful stimuli. "It may be that one of the reasons people stay addicted is to avoid going through this unpleasant state of withdrawal," said Gear.

Under other conditions, it's possible that a painful stimulus, by activating the nucleus accumbens, might itself be experienced as rewarding, as appears to occur in self-injurious behaviors. Interestingly, treatment for this class of disorders, characterized by pursuit of painful experiences often for apparent thrill-seeking value, includes administration of naloxone, a drug that blocks the effects of opioids in this reward circuit.

The researchers conducted the bulk of their study in anesthetized rats, measuring the animals' response to pain signals in the paws. Because these animals were anesthetized, the measurements were taken using a technique known as the jaw-opening reflex, in which the degree to which the jaw opens reflexively in response to painful stimuli to the tooth indicates the level of pain experienced. The jaw-opening reflex decreased, a sign of analgesia, as the painful stimulus increased.

The fact that the analgesic effect was demonstrated in the teeth, far from the hindpaw, indicated its general effect in the whole body. The analgesic effects did not require repeated application of the stimuli, and were shown to last at least an hour.

"Our results were quite dramatic," said senior author Levine. "They've spawned several new studies in our lab aimed at revealing more about the role of the reward pathway, and the nucleus accumbens specifically, in human behaviors." The other co-author of the study was K.O. Aley, PhD, of the UCSF Department of Oral and Maxillofacial Surgery.

The UCSF study was funded by the State of California Tobacco-Related Diseases Research program.
-end-


University of California - San Francisco

Related Pain Articles from Brightsurf:

Pain researchers get a common language to describe pain
Pain researchers around the world have agreed to classify pain in the mouth, jaw and face according to the same system.

It's not just a pain in the head -- facial pain can be a symptom of headaches too
A new study finds that up to 10% of people with headaches also have facial pain.

New opioid speeds up recovery without increasing pain sensitivity or risk of chronic pain
A new type of non-addictive opioid developed by researchers at Tulane University and the Southeast Louisiana Veterans Health Care System accelerates recovery time from pain compared to morphine without increasing pain sensitivity, according to a new study published in the Journal of Neuroinflammation.

The insular cortex processes pain and drives learning from pain
Neuroscientists at EPFL have discovered an area of the brain, the insular cortex, that processes painful experiences and thereby drives learning from aversive events.

Pain, pain go away: new tools improve students' experience of school-based vaccines
Researchers at the University of Toronto and The Hospital for Sick Children (SickKids) have teamed up with educators, public health practitioners and grade seven students in Ontario to develop and implement a new approach to delivering school-based vaccines that improves student experience.

Pain sensitization increases risk of persistent knee pain
Becoming more sensitive to pain, or pain sensitization, is an important risk factor for developing persistent knee pain in osteoarthritis (OA), according to a new study by researchers from the Université de Montréal (UdeM) School of Rehabilitation and Hôpital Maisonneuve Rosemont Research Centre (CRHMR) in collaboration with researchers at Boston University School of Medicine (BUSM).

Becoming more sensitive to pain increases the risk of knee pain not going away
A new study by researchers in Montreal and Boston looks at the role that pain plays in osteoarthritis, a disease that affects over 300 million adults worldwide.

Pain disruption therapy treats source of chronic back pain
People with treatment-resistant back pain may get significant and lasting relief with dorsal root ganglion (DRG) stimulation therapy, an innovative treatment that short-circuits pain, suggests a study presented at the ANESTHESIOLOGY® 2018 annual meeting.

Sugar pills relieve pain for chronic pain patients
Someday doctors may prescribe sugar pills for certain chronic pain patients based on their brain anatomy and psychology.

Peripheral nerve block provides some with long-lasting pain relief for severe facial pain
A new study has shown that use of peripheral nerve blocks in the treatment of Trigeminal Neuralgia (TGN) may produce long-term pain relief.

Read More: Pain News and Pain Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.