Retroviral gene therapy? ASLV, HIV, and MLV show distinct target site preferences

August 16, 2004

Many diseases (including inherited disorders like cystic fibrosis to cancer) have a genetic component and gene therapy holds the promise of restoring compromised genes with their healthy counterparts. That promise was quashed when a teenager -- Jesse Gelsinger -- suffering from a rare hereditary liver disorder died after participating in an experimental gene therapy trial in 1999. In another case, two young boys who received gene therapy for the severe immunodeficiency disorder known as "bubble boy disease" developed leukemia-like symptoms 30 months after treatment. In this case, the viral vector inserted itself near a promoter region -- a site that initiates gene transcription -- of a proto-oncogene, a gene that can initiate cancer. Since viral vectors can integrate at various genomic locations, the safety and effectiveness of gene therapy ultimately depends on being able to predict a virus's particular bias.

In order to determine whether different viruses have greater gene therapy potential, Rick Mitchell et al. compared retroviral vectors derived from three viruses and report 3,127 sites where these viruses typically integrate into the human genome. The different vectors, they found, show different target preferences. Mitchell et al. studied vectors derived from the human immunodeficiency virus (HIV), avian sarcoma-leukosis virus (ASLV), and murine leukemia virus (MLV). Introducing the viral vectors into human cells, the authors analyzed the gene expression profiles of the cells to determine where vectors integrate into human chromosomes and which, if any, genes they activate. Each retrovirus, they discovered, showed distinct preferences for genome integration. HIV vectors tend to integrate into sites of active transcription, favoring chromosomal regions rich in expressed genes. MLV vectors tend to integrate near transcription initiation sites, confirming the results of a previous study, with a weak bias toward active genes. In contrast, the authors report, the ASLV vector "does not favor integration near transcription sites, nor does it strongly favor active genes."

ASLV might have more refined integration preferences during normal infection of chicken cells, the authors note, but its integration machinery can't interact properly with human cells. The leukemia-like effects of the bubble boy gene therapy stemmed from integration of a mammalian retrovirus -- the MLV vector -- near an oncogene promoter region. Since ASLV tends to avoid both transcription initiation sites and active gene sites, it could be a more promising candidate for human gene therapy. Mitchell et al. make the case that scientists can gain more control over where viral vectors integrate into the human genome by selecting different retroviral integration systems. Only time will tell whether more control translates into safer gene therapy protocols.
-end-
Citation: Mitchell R, et al. (2004) Retroviral DNA Integration: ASLV, HIV, and MLV Show Distinct Target Site Preferences. PLoS Biol 2 (8) : e234.

CONTACT:
Frederic D. Bushman
University of Pennsylvania School of Medicine
Philadelphia, PA USA
1-215-573-8732
1-215-573-4856 (fax)
bushman@mail.med.upenn.edu

PLEASE MENTION PLoS BIOLOGY (www.plosbiology.org) AS THE SOURCE FOR THESE ARTICLES. THANK YOU.

All works published in PLoS Biology are open access. Everything is immediately available without cost to anyone, anywhere--to read, download, redistribute, include in databases, and otherwise use--subject only to the condition that the original authorship is properly attributed. Copyright is retained by the authors. The Public Library of Science uses the Creative Commons Attribution License.

PLOS

Related Human Genome Articles from Brightsurf:

240 mammals help us understand the human genome
A large international consortium led by scientists at Uppsala University and the Broad Institute of MIT and Harvard has sequenced the genome of 130 mammals and analysed the data together with 110 existing genomes to allow scientist to identify which are the important positions in the DNA.

The National Human Genome Research Institute publishes new vision for human genomics
The National Human Genome Research Institute this week published its 'Strategic vision for improving human health at The Forefront of Genomics' in the journal Nature.

Interpreting the human genome's instruction manual
Berkeley Lab bioscientists are part of a nationwide research project, called ENCODE, that has generated a detailed atlas of the molecular elements that regulate our genes.

3-D shape of human genome essential for robust inflammatory response
The three-dimensional structure of the human genome is essential for providing a rapid and robust inflammatory response but is surprisingly not vital for reprogramming one cell type into another.

The genome of chimpanzees and gorillas could help to better understand human tumors
A new study by researchers from the Institute of Evolutionary Biology (IBE), a joint center of UPF and the Spanish National Research Council (CSIC), shows that, surprisingly, the distribution of mutations in human tumors is more similar to that of chimpanzees and gorillas than that of humans.

It's in our genome: Uncovering clues to longevity from human genetics
Researchers from Osaka University found that high blood pressure and obesity are the strongest factors reducing lifespan based on genetic and clinical information of 700,000 patients in the UK, Finland and Japan.

New limits to functional portion of human genome reported
An evolutionary biologist at the University of Houston has published new calculations that indicate no more than 25 percent of the human genome is functional.

Synthesizing the human genome from scratch
For the past 15 years, synthetic biologists have been figuring out how to synthesize an organism's complete set of DNA, including all of its genes.

Science and legal experts debate future uses and impact of human genome editing in Gender & the Genome
Precise, economical genome editing tools such as CRISPR have made it possible to make targeted changes in genes, which could be applied to human embryos to correct mutations, prevent disease, or alter traits.

Evolution purged many Neanderthal genes from human genome
Neanderthal genetic material is found in only small amounts in the genomes of modern humans because, after interbreeding, natural selection removed large numbers of weakly deleterious Neanderthal gene variants, according to a study by Ivan Juric and colleagues at the University of California, Davis, published Nov.

Read More: Human Genome News and Human Genome Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.