NIH awards WSU researcher $1.39M to study chromatin's role in cell division

August 16, 2011

DETROIT - The National Institute of General Medical Sciences of the National Institutes of Health recently awarded Lori A. Pile, Ph.D., assistant professor of molecular cell biology in Wayne State University's College of Liberal Arts and Sciences, $1.39 million to research how the alteration of chromatin regulates cellular division and growth. The study is intended to support the development of cancer treatments currently undergoing clinical trials.

Chromatin is a DNA-protein structure that resembles a long DNA "string" wrapped around protein "beads." When certain molecules, called chromatin modifiers, react with the protein beads, the entire chromatin structure either decompresses or coils up tightly. "Chromatin modification depends on whether the proteins were acetylated or deacetylated - in other words, what kind of modifier reacted with the protein," said Pile.

There are two main types of chromatin modifiers. Histone acetyltransferases (HATs) acetylate the proteins, loosening the chromatin structure. Histone deacetylases (HDACs) deacetylate and tighten DNA's grip on the proteins. A correct balance of action of these chromatin modifiers is necessary for normal cell division. Both activities are required for cells to multiply. But when the balance tips in favor of the deacetylation step, cells can multiply too much, Pile said, and cancer is often the culprit.

That is why deacetylation is being targeted by researchers looking for a way to treat patients with cancer. Yet the exact role of HDACs and deacetylation requires more in-depth exploration.

"While a number of chromatin modifiers are currently being tested as anti-cancer agents in clinical trials, the molecular mechanisms behind their cancer-killing properties are not well understood," said Pile. "Our study is anticipated to clarify these mechanisms and refine the molecular tools designed to target cancer."

These "molecular tools" are histone deacetylase inhibitors, or HDIs. To refine HDIs, Pile will uncover the mechanisms of the target, HDAC chromatin modifiers. She will test a particular HDAC called Swi-independent SIN3 and determine whether SIN3 does, in fact, regulate cell growth and multiplication and, if so, how it affects deacetylation and gene repression.

"Inhibiting HDACs, the agents that fuel unregulated cell division, is anticipated to be an effective approach to preventing cancer progression," said Pile.
-end-
Wayne State University is one of the nation's pre-eminent public research universities in an urban setting. Through its multidisciplinary approach to research and education, and its ongoing collaboration with government, industry and other institutions, the university seeks to enhance economic growth and improve the quality of life in the city of Detroit, state of Michigan and throughout the world. For more information about research at Wayne State University, visit http://www.research.wayne.edu.

Wayne State University - Office of the Vice President for Research

Related Cancer Articles from Brightsurf:

New blood cancer treatment works by selectively interfering with cancer cell signalling
University of Alberta scientists have identified the mechanism of action behind a new type of precision cancer drug for blood cancers that is set for human trials, according to research published in Nature Communications.

UCI researchers uncover cancer cell vulnerabilities; may lead to better cancer therapies
A new University of California, Irvine-led study reveals a protein responsible for genetic changes resulting in a variety of cancers, may also be the key to more effective, targeted cancer therapy.

Breast cancer treatment costs highest among young women with metastic cancer
In a fight for their lives, young women, age 18-44, spend double the amount of older women to survive metastatic breast cancer, according to a large statewide study by the University of North Carolina at Chapel Hill.

Cancer mortality continues steady decline, driven by progress against lung cancer
The cancer death rate declined by 29% from 1991 to 2017, including a 2.2% drop from 2016 to 2017, the largest single-year drop in cancer mortality ever reported.

Stress in cervical cancer patients associated with higher risk of cancer-specific mortality
Psychological stress was associated with a higher risk of cancer-specific mortality in women diagnosed with cervical cancer.

Cancer-sniffing dogs 97% accurate in identifying lung cancer, according to study in JAOA
The next step will be to further fractionate the samples based on chemical and physical properties, presenting them back to the dogs until the specific biomarkers for each cancer are identified.

Moffitt Cancer Center researchers identify one way T cell function may fail in cancer
Moffitt Cancer Center researchers have discovered a mechanism by which one type of immune cell, CD8+ T cells, can become dysfunctional, impeding its ability to seek and kill cancer cells.

More cancer survivors, fewer cancer specialists point to challenge in meeting care needs
An aging population, a growing number of cancer survivors, and a projected shortage of cancer care providers will result in a challenge in delivering the care for cancer survivors in the United States if systemic changes are not made.

New cancer vaccine platform a potential tool for efficacious targeted cancer therapy
Researchers at the University of Helsinki have discovered a solution in the form of a cancer vaccine platform for improving the efficacy of oncolytic viruses used in cancer treatment.

American Cancer Society outlines blueprint for cancer control in the 21st century
The American Cancer Society is outlining its vision for cancer control in the decades ahead in a series of articles that forms the basis of a national cancer control plan.

Read More: Cancer News and Cancer Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.