Nav: Home

Studying blood flow dynamics to identify the heart of vessel failure

August 16, 2016

WASHINGTON, D.C., August 16, 2016 -- When plaque, fatty deposits that build up on the inside of arteries, rupture and block blood flow, the results can be deadly. Such hardening of the arteries, also called atherosclerosis, typically leads to heart disease, the leading cause of death in the United States. Despite years of therapeutic advances, scientists are still figuring out how and why these deposits develop, searching for a way to reduce the number of heart attacks and strokes.

Now, new research from a fluid mechanics team in Greece reveals how blood flow dynamics within blood vessels may influence where plaques develop or rupture this week in Physics of Fluids, from AIP Publishing. The findings could one day help doctors identify weak spots on a vessel wall that are likeliest to fail, and lead to early interventions in treating heart disease.

In the study, the scientists developed a computer-based analytical solution that helps predict sites of vessel failure based on computations of disease-causing flow. They represented the complex blood flow within the heart during a cardiac cycle -- the complete sequence of events in the heart from the beginning of one beat to the next.

The research improves predictions of circumferential wall stress or the forces inside the blood vessel compared to other methods. "This is a factor that may contribute ... to the faster aging of the arterial system and the possible malfunction of the aorta," said lead researcher Gerasimos A.T. Messaris, a medical physicist at the University Hospital of Patras in Greece.

The team includes investigators from the Medical Physics Department of the University Hospital of Patras, the School of Science and Technology of the Hellenic Open University and the Division of Theoretical Physics of the Department of Physics of the University of Patras.

The researchers also focused on the role inflow played by a parameter called the Womersley number. In the analysis of a biological fluid such as blood, it pertains to the unsteady parts of flow or the way blood pulses through vessels.

"Our present work is motivated by the fact that blood flow in the aorta and the main arteries is governed by large finite values of the Womersley number α ...The existing numerical solutions, although accurate, give limited information about the factors that affect the flow, whereas an analytical approach ... can provide physical insight to the flow mechanism," said Messaris.

Identifying likely rupture spots on vessels is crucial for improving heart care for atherosclerotic disease because the plaque-forming cycle of cardiac disease begins with a rupture, or tear, in the vessel walls. This opening allows disease-causing particles to enter the vessel wall layers and progressively grow into plaques that either block the vessel, or cause a catastrophic rupture.
-end-
The article, "Unsteady fluid flow in a slightly curved pipe: A comparative study of a matched asymptotic expansions solution with a single analytical solution," is authored by Gerasimos A.T. Messaris, Maria Hadjinicolaou and George T. Karahalios. The article will appear in the journal Physics of Fluids on August 16, 2016 [10.1063/1.4960432]. After that date, it can be accessed at http://scitation.aip.org/content/aip/journal/pof2/28/8/10.1063/1.4960432.

ABOUT THE JOURNAL

Physics of Fluids is devoted to the publication of original theoretical, computational, and experimental contributions to the dynamics of gases, liquids, and complex or multiphase fluids. See http://pof.aip.org.

American Institute of Physics

Related Heart Disease Articles:

Arsenic in drinking water may change heart structure raising risk of heart disease
Drinking water that is contaminated with arsenic may lead to thickening of the heart's main pumping chamber in young adults, according to a new study by researchers at Columbia University Mailman School of Public Health.
New health calculator can help predict heart disease risk, estimate heart age
A new online health calculator can help people determine their risk of heart disease, as well as their heart age, accounting for sociodemographic factors such as ethnicity, sense of belonging and education, as well as health status and lifestyle behaviors.
Wide variation in rate of death between VA hospitals for patients with heart disease, heart failure
Death rates for veterans with ischemic heart disease and chronic heart failure varied widely across the Veterans Affairs (VA) health care system from 2010 to 2014, which could suggest differences in the quality of cardiovascular health care provided by VA medical centers.
Heart failure: The Alzheimer's disease of the heart?
Similar to how protein clumps build up in the brain in people with some neurodegenerative diseases such as Alzheimer's and Parkinson's diseases, protein clumps appear to accumulate in the diseased hearts of mice and people with heart failure, according to a team led by Johns Hopkins University researchers.
Women once considered low risk for heart disease show evidence of previous heart attack scars
Women who complain about chest pain often are reassured by their doctors that there is no reason to worry because their angiograms show that the women don't have blockages in the major heart arteries, a primary cause of heart attacks in men.
Where you live could determine risk of heart attack, stroke or dying of heart disease
People living in parts of Ontario with better access to preventive health care had lower rates of cardiac events compared to residents of regions with less access, found a new study published in CMAJ (Canadian Medical Association Journal).
Older adults with heart disease can become more independent and heart healthy with physical activity
Improving physical function among older adults with heart disease helps heart health and even the oldest have a better quality of life and greater independence.
Dietary factors associated with substantial proportion of deaths from heart disease, stroke, and disease
Nearly half of all deaths due to heart disease, stroke, and type 2 diabetes in the US in 2012 were associated with suboptimal consumption of certain dietary factors, according to a study appearing in the March 7 issue of JAMA.
Certain heart fat associated with higher risk of heart disease in postmenopausal women
For the first time, researchers have pinpointed a type of heart fat, linked it to a risk factor for heart disease and shown that menopausal status and estrogen levels are critical modifying factors of its associated risk in women.
Maternal chronic disease linked to higher rates of congenital heart disease in babies
Pregnant women with congenital heart defects or type 2 diabetes have a higher risk of giving birth to babies with severe congenital heart disease and should be monitored closely in the prenatal period, according to a study published in CMAJ.
More Heart Disease News and Heart Disease Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Rethinking Anger
Anger is universal and complex: it can be quiet, festering, justified, vengeful, and destructive. This hour, TED speakers explore the many sides of anger, why we need it, and who's allowed to feel it. Guests include psychologists Ryan Martin and Russell Kolts, writer Soraya Chemaly, former talk radio host Lisa Fritsch, and business professor Dan Moshavi.
Now Playing: Science for the People

#538 Nobels and Astrophysics
This week we start with this year's physics Nobel Prize awarded to Jim Peebles, Michel Mayor, and Didier Queloz and finish with a discussion of the Nobel Prizes as a way to award and highlight important science. Are they still relevant? When science breakthroughs are built on the backs of hundreds -- and sometimes thousands -- of people's hard work, how do you pick just three to highlight? Join host Rachelle Saunders and astrophysicist, author, and science communicator Ethan Siegel for their chat about astrophysics and Nobel Prizes.