Nav: Home

Toxic formaldehyde is produced inside our own cells, scientists discover

August 16, 2017

New research has revealed that some of the toxin formaldehyde in our bodies does not come from our environment - it is a by-product of an essential reaction inside our own cells. This could provide new targets for developing cancer therapies, according to research led by scientists from the Medical Research Council (MRC) Laboratory of Molecular Biology.

The research, published in Nature, has uncovered that formaldehyde is a by-product of a key process called the 'one carbon cycle'. This cycle uses a vitamin - folate - to create DNA and essential amino acids, which cells need to function and multiply.

Dr Ketan Patel, senior author on the paper from the MRC Laboratory of Molecular Biology, said: "We've known for a while that we must produce formaldehyde in our bodies, but we didn't know where it comes from. We've discovered that some of it comes from an unexpected source, a key pathway - called the one carbon cycle - that's used to make the building blocks of life, such as DNA and certain amino acids. The one-carbon cycle is a fundamental process which is present in all forms of life, right down to bacteria."

Formaldehyde is a toxin because it can damage DNA. However, our cells have two lines of defence against the danger of formaldehyde. Firstly, an enzyme converts the formaldehyde into a less dangerous chemical, called formate. And secondly, DNA damage caused by formaldehyde can be fixed by DNA repair enzymes.

These findings could provide a new target for developing cancer drugs, as some types of cancer - notably BRCA1 or BRCA2 breast cancers - lack the DNA repair enzymes to protect themselves from formaldehyde toxicity. The researchers found that treating laboratory-grown cells with folate leads to the release of formaldehyde, and speculate this could lethally damage the DNA of the BRCA cancer cells that cannot repair this damage. Healthy surrounding cells would not be damaged since they have functioning DNA repair mechanisms.

Dr Patel commented: "The one carbon cycle is already a key target for cancer drugs and this study opens up exciting new opportunities to harness this pathway for cancer research."

Dual action

The scientists were surprised to find that the toxic formaldehyde also has a positive function in cells, as it paradoxically also fuels the one-carbon cycle. Formaldehyde is broken down into formate, which the one-carbon cycle uses to make the building blocks of life.

Dr Patel said: "Surprisingly, although the body produces this violently toxic formaldehyde, it then converts it into something that can be used to fuel the one-carbon cycle. So, something toxic is converted into something useful to the body, to make certain amino acids and DNA. Folate and formaldehyde have two faces: a beneficial side because they provide the chemical buildings blocks for cells to live and grow, and a dangerous side because formaldehyde can damage DNA."

This discovery suggests how cancer cells may be able to resist current chemotherapy drugs, such as methotrexate, that block folate going into the one carbon cycle. The researchers suggest that with folate pathway blocked, cancer cells might be able to keep functioning by switching to using the newly discovered formaldehyde pathway to build the DNA and proteins that cancer cells need to multiply.

Dr Nathan Richardson, MRC Head of Molecular and Cellular Medicine, said: "This study is a great example of the value of investing in discovery science, where important insights into cellular metabolism have opened up new opportunities for treating interventions in diseases, such as cancer and overcoming resistance to existing therapies."

While the study shows that increased input of folate results in greater formaldehyde toxicity, it was conducted in laboratory cell cultures dosed with high amounts of folate and genetically altered so that they cannot process formaldehyde. The authors caution that no conclusions should be drawn about whether there is any overall effect in a living animal consuming folate.
-end-


Medical Research Council

Related Cancer Articles:

Radiotherapy for invasive breast cancer increases the risk of second primary lung cancer
East Asian female breast cancer patients receiving radiotherapy have a higher risk of developing second primary lung cancer.
Cancer genomics continued: Triple negative breast cancer and cancer immunotherapy
Continuing PLOS Medicine's special issue on cancer genomics, Christos Hatzis of Yale University, New Haven, Conn., USA and colleagues describe a new subtype of triple negative breast cancer that may be more amenable to treatment than other cases of this difficult-to-treat disease.
Metabolite that promotes cancer cell transformation and colorectal cancer spread identified
Osaka University researchers revealed that the metabolite D-2-hydroxyglurate (D-2HG) promotes epithelial-mesenchymal transition of colorectal cancer cells, leading them to develop features of lower adherence to neighboring cells, increased invasiveness, and greater likelihood of metastatic spread.
UH Cancer Center researcher finds new driver of an aggressive form of brain cancer
University of Hawai'i Cancer Center researchers have identified an essential driver of tumor cell invasion in glioblastoma, the most aggressive form of brain cancer that can occur at any age.
UH Cancer Center researchers develop algorithm to find precise cancer treatments
University of Hawai'i Cancer Center researchers developed a computational algorithm to analyze 'Big Data' obtained from tumor samples to better understand and treat cancer.
New analytical technology to quantify anti-cancer drugs inside cancer cells
University of Oklahoma researchers will apply a new analytical technology that could ultimately provide a powerful tool for improved treatment of cancer patients in Oklahoma and beyond.
Radiotherapy for lung cancer patients is linked to increased risk of non-cancer deaths
Researchers have found that treating patients who have early stage non-small cell lung cancer with a type of radiotherapy called stereotactic body radiation therapy is associated with a small but increased risk of death from causes other than cancer.
Cancer expert says public health and prevention measures are key to defeating cancer
Is investment in research to develop new treatments the best approach to controlling cancer?
UI Cancer Center, Governors State to address cancer disparities in south suburbs
The University of Illinois Cancer Center and Governors State University have received a joint four-year, $1.5 million grant from the National Cancer Institute to help both institutions conduct community-based research to reduce cancer-related health disparities in Chicago's south suburbs.
Leading cancer research organizations to host international cancer immunotherapy conference
The Cancer Research Institute, the Association for Cancer Immunotherapy, the European Academy of Tumor Immunology, and the American Association for Cancer Research will join forces to sponsor the first International Cancer Immunotherapy Conference at the Sheraton New York Times Square Hotel in New York, Sept.

Related Cancer Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Climate Crisis
There's no greater threat to humanity than climate change. What can we do to stop the worst consequences? This hour, TED speakers explore how we can save our planet and whether we can do it in time. Guests include climate activist Greta Thunberg, chemical engineer Jennifer Wilcox, research scientist Sean Davis, food innovator Bruce Friedrich, and psychologist Per Espen Stoknes.
Now Playing: Science for the People

#527 Honey I CRISPR'd the Kids
This week we're coming to you from Awesome Con in Washington, D.C. There, host Bethany Brookshire led a panel of three amazing guests to talk about the promise and perils of CRISPR, and what happens now that CRISPR babies have (maybe?) been born. Featuring science writer Tina Saey, molecular biologist Anne Simon, and bioethicist Alan Regenberg. A Nobel Prize winner argues banning CRISPR babies won’t work Geneticists push for a 5-year global ban on gene-edited babies A CRISPR spin-off causes unintended typos in DNA News of the first gene-edited babies ignited a firestorm The researcher who created CRISPR twins defends...