Nav: Home

Impaired DNA replication can cause epigenetic changes inherited for several generations

August 16, 2017

Cell division is key for renewing the cells in our tissues and organs. There are two particular processes in which cell division is crucial: embryonic development and tumorigenesis. A fault in the process that copies DNA during cell division can cause genetic changes, so impaired DNA replication is a well-known cancer hallmark and a driver of genomic instability.

Now, scientists at the Centre for Genomic Regulation (CRG) in collaboration with the Josep Carreras Leukaemia Research Institute (IJC) and The Institute for Health Science Research Germans Trias i Pujol (IGTP) have discovered that impaired DNA replication can also cause large epigenetic changes. Their study, which was performed in worms (the model organism Caenorhabditis elegans), suggests that these genome-wide epigenetic alterations establish new gene expression states that may be inherited for up-to five generations. This is a striking example of trans-generational inheritance of epigenetic changes meaning that two individuals may differ in gene expression only because of the stress experienced by their ancestors.

The researchers, led by ICREA research professor and group leader at the CRG Ben Lehner, also identified the mechanism causing these epigenetic changes. "For the correct function of cells and ultimately the health of the organism, it is important to keep certain genes active and others silenced. Inside cells, there are DNA-protein complexes called heterochromatin that prevent genes from becoming activated when they should not be. Initially, we noticed that a gene artificially inserted into the worm genome and normally silenced by heterochromatin was activated in animals that carried mutations in proteins involved in the copying of DNA," explains Tanya Vavouri CRG alumna currently group leader at IJC and IGTP and coauthor of this study. "We found that this was caused by loss of heterochromatin and that other genes also silenced by heterochromatin were activated too. Unexpectedly, the gene was inappropriately activated for five generations in animals that did not carry the mutation in DNA replication but had ancestors that did," she adds.

"Our results show that impaired DNA replication not only causes genetic alterations but also genome-wide epigenetic changes that can be stably inherited," says Ben Lehner, senior author of the paper. An important question in epigenetics is the extent to which epigenetic states are transmitted between generations. Lehner and collaborators are addressing this and other questions from many different angles. They previously reported that some temperature-induced gene expression changes can also be inherited between generations. "We hope that our work will change the way people think about the impact of replication stress during tumorigenesis and embryonic development as well as about inter-generational inheritance," he concludes.
-end-


Center for Genomic Regulation

Related Dna Articles:

Penn State DNA ladders: Inexpensive molecular rulers for DNA research
New license-free tools will allow researchers to estimate the size of DNA fragments for a fraction of the cost of currently available methods.
It is easier for a DNA knot...
How can long DNA filaments, which have convoluted and highly knotted structure, manage to pass through the tiny pores of biological systems?
How do metals interact with DNA?
Since a couple of decades, metal-containing drugs have been successfully used to fight against certain types of cancer.
Electrons use DNA like a wire for signaling DNA replication
A Caltech-led study has shown that the electrical wire-like behavior of DNA is involved in the molecule's replication.
Switched-on DNA
DNA, the stuff of life, may very well also pack quite the jolt for engineers trying to advance the development of tiny, low-cost electronic devices.
Researchers are first to see DNA 'blink'
Northwestern University biomedical engineers have developed imaging technology that is the first to see DNA 'blink,' or fluoresce.
Finding our way around DNA
A Salk team developed a tool that maps functional areas of the genome to better understand disease.
A 'strand' of DNA as never before
In a carefully designed polymer, researchers at the Institute of Physical Chemistry of the Polish Academy of Sciences have imprinted a sequence of a single strand of DNA.
Doubling down on DNA
The African clawed frog X. laevis genome contains two full sets of chromosomes from two extinct ancestors.
'Poring over' DNA
Church's team at Harvard's Wyss Institute for Biologically Inspired Engineering and the Harvard Medical School developed a new electronic DNA sequencing platform based on biologically engineered nanopores that could help overcome present limitations.

Related Dna Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Digital Manipulation
Technology has reshaped our lives in amazing ways. But at what cost? This hour, TED speakers reveal how what we see, read, believe — even how we vote — can be manipulated by the technology we use. Guests include journalist Carole Cadwalladr, consumer advocate Finn Myrstad, writer and marketing professor Scott Galloway, behavioral designer Nir Eyal, and computer graphics researcher Doug Roble.
Now Playing: Science for the People

#529 Do You Really Want to Find Out Who's Your Daddy?
At least some of you by now have probably spit into a tube and mailed it off to find out who your closest relatives are, where you might be from, and what terrible diseases might await you. But what exactly did you find out? And what did you give away? In this live panel at Awesome Con we bring in science writer Tina Saey to talk about all her DNA testing, and bioethicist Debra Mathews, to determine whether Tina should have done it at all. Related links: What FamilyTreeDNA sharing genetic data with police means for you Crime solvers embraced...