Math shows how human behavior spreads infectious diseases

August 16, 2018

Mathematics can help public health workers better understand and influence human behaviours that lead to the spread of infectious disease, according to a study from the University of Waterloo.

Current models used to predict the emergence and evolution of pathogens within host populations do not include social behaviour.

"We tend to treat disease systems in isolation from social systems, and we don't often think about how they connect to each other, or influence each other," said Chris Bauch, co-author and a professor in the Department of Applied Mathematics at Waterloo. "This gives us a better appreciation of how social reactions to infectious diseases can influence which strains become prominent in the population."

By adding dynamic social interactions to the models already used for disease outbreaks and evolution, researchers could better anticipate how a virulent pathogen strain may emerge based on how humans attempt to control the spread of the disease. This new addition to disease modelling could allow scientists to better prevent undesirable outcomes, such as more dangerous mutant strains from evolving and spreading.

The social modelling could impact public health responses to emerging infectious diseases like Ebola and Severe Acute Respiratory Syndrome (SARS). Human behaviour during these outbreaks often changes dramatically during the outbreak. People may start using face masks, or stop using them prematurely. Also, public fear of the pathogens may end up driving the wrong type of behaviour if the public's information is incorrect. The modelling could help public health responses navigate and better channel these kinds of population responses,

Bauch and his co-author Joe Pharaon formulated the new mathematical model to study the influence of social behaviour on the competition between pathogen strains with different virulence. Using computer simulations, they analyzed how the model behaved under various possible scenarios that might occur to populations to explore the logic of the hypothesis that social behaviour plays a role in the evolution of the strain.

"Human behaviour plays a big role in the spread and evolution of an infectious disease," said Pharaon,a PhD candidate at Waterloo's Faculty of Mathematics. "The model we formulated was a general model, but it could be adapted with more biological detail and structure for more specific pathogens."

The paper, The influence of social behaviour on competition between virulent pathogen strains, appears in the Journal of Theoretical Biology.
-end-


University of Waterloo

Related Evolution Articles from Brightsurf:

Seeing evolution happening before your eyes
Researchers from the European Molecular Biology Laboratory in Heidelberg established an automated pipeline to create mutations in genomic enhancers that let them watch evolution unfold before their eyes.

A timeline on the evolution of reptiles
A statistical analysis of that vast database is helping scientists better understand the evolution of these cold-blooded vertebrates by contradicting a widely held theory that major transitions in evolution always happened in big, quick (geologically speaking) bursts, triggered by major environmental shifts.

Looking at evolution's genealogy from home
Evolution leaves its traces in particular in genomes. A team headed by Dr.

How boundaries become bridges in evolution
The mechanisms that make organisms locally fit and those responsible for change are distinct and occur sequentially in evolution.

Genome evolution goes digital
Dr. Alan Herbert from InsideOutBio describes ground-breaking research in a paper published online by Royal Society Open Science.

Paleontology: Experiments in evolution
A new find from Patagonia sheds light on the evolution of large predatory dinosaurs.

A window into evolution
The C4 cycle supercharges photosynthesis and evolved independently more than 62 times.

Is evolution predictable?
An international team of scientists working with Heliconius butterflies at the Smithsonian Tropical Research Institute (STRI) in Panama was faced with a mystery: how do pairs of unrelated butterflies from Peru to Costa Rica evolve nearly the same wing-color patterns over and over again?

Predicting evolution
A new method of 're-barcoding' DNA allows scientists to track rapid evolution in yeast.

Insect evolution: Insect evolution
Scientists at Ludwig-Maximilians-Universitaet (LMU) in Munich have shown that the incidence of midge and fly larvae in amber is far higher than previously thought.

Read More: Evolution News and Evolution Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.