How do plants rest photosynthetic activity at night?

August 16, 2018

Photosynthesis, the process by which plants generate food, is a powerful piece of molecular machinery that needs sunlight to run. The proteins involved in photosynthesis need to be 'on' when they have the sunlight they need to function, but need to idle, like the engine of a car at a traffic light, in the dark, when photosynthesis is not possible. They do this by a process called 'redox regulation'--the activation and deactivation of proteins via changes in their redox (reduction/oxidation) states. What happens in light is well understood: the ferredoxin-thioredoxin reductase (FTR)/thioredoxin (Trx) pathway is responsible for the reduction process, which activates the photosynthetic pathway. However, scientists have long been in the dark about what happens when light is not available, and how plants reset photosynthetic proteins to be ready to function when light is resumed.

Now, Keisuke Yoshida, Toru Hisabori and colleagues have identified two proteins, constituting the thioredoxin-like2 (TrxL2)/2-Cys peroxiredoxin (2CP) redox cascade, that help control the reoxidation of these photosynthetic proteins by modifying key parts of the molecular players. These two proteins appear to function as part of a cascade that siphons energy from the photosynthetic proteins to the always energy-hungry hydrogen peroxide. TrxL2, unlike similar, better-known proteins, seems to be specialized for the 'switching off' process; it's an efficient oxidizer of many proteins, but only reduces 2CP, allowing the energy drained by TrxL2 from several upstream reactions to pass to 2CP and thence hydrogen peroxide. This cascade thus keeps photosynthesis on standby until light is available again.

TrxL2/2CP do work in light as well, but are overshadowed by the normal activation machinery in plants and only take center stage in the absence of light. Interestingly, this cascade does not seem to affect photosynthesis itself, as mutant plants without 2CP behave normally in light; however, the 'switching off' mechanism is significantly less efficient in these mutant plants than in wild-type plants. Moreover, the fact that this process is less efficient, rather than absent altogether, suggests that other, as yet unknown, proteins serve similar functions in plants. These researchers thus shed light on how plants reserve the activity of photosynthetic proteins for when it's actually useful.

Tokyo Institute of Technology

Related Photosynthesis Articles from Brightsurf:

During COVID, scientists turn to computers to understand C4 photosynthesis
When COVID closed down their lab, a team from the University of Essex turned to computational approaches to understand what makes some plants better adapted to transform light and carbon dioxide into yield through photosynthesis.

E. coli bacteria offer path to improving photosynthesis
Cornell University scientists have engineered a key plant enzyme and introduced it in Escherichia coli bacteria in order to create an optimal experimental environment for studying how to speed up photosynthesis, a holy grail for improving crop yields.

Showtime for photosynthesis
Using a unique combination of nanoscale imaging and chemical analysis, an international team of researchers has revealed a key step in the molecular mechanism behind the water splitting reaction of photosynthesis, a finding that could help inform the design of renewable energy technology.

Photosynthesis in a droplet
Researchers develop an artificial chloroplast.

Even bacteria need their space: Squished cells may shut down photosynthesis
Introverts take heart: When cells, like some people, get too squished, they can go into defense mode, even shutting down photosynthesis.

Marine cyanobacteria do not survive solely on photosynthesis
The University of Cordoba published a study in a journal from the Nature group that supports the idea that marine cyanobacteria also incorporate organic compounds from the environment.

Photosynthesis -- living laboratories
Ludwig-Maximilians-Universitaet (LMU) in Munich biologists Marcel Dann and Dario Leister have demonstrated for the first time that cyanobacteria and plants employ similar mechanisms and key proteins to regulate cyclic electron flow during photosynthesis.

Photosynthesis seen in a new light by rapid X-ray pulses
In a new study, led by Petra Fromme and Nadia Zatsepin at the Biodesign Center for Applied Structural Discovery, the School of Molecular Sciences and the Department of Physics at ASU, researchers investigated the structure of Photosystem I (PSI) with ultrashort X-ray pulses at the European X-ray Free Electron Laser (EuXFEL), located in Hamburg, Germany.

Photosynthesis olympics: can the best wheat varieties be even better?
Scientists have put elite wheat varieties through a sort of 'Photosynthesis Olympics' to find which varieties have the best performing photosynthesis.

Strange bacteria hint at ancient origin of photosynthesis
Structures inside rare bacteria are similar to those that power photosynthesis in plants today, suggesting the process is older than assumed.

Read More: Photosynthesis News and Photosynthesis Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to