China & UK scientists find coarse resolution models underestimate future Mei-yu rainfall

August 16, 2018

Climate models are indispensable tools for future climate projection including the Mei-yu front rainfall, which is the major rain-bearing system of the East Asian summer monsoon. Adaptation of climate changes relies heavily on the data of climate projection from the Coupled Model Intercomparison Project (CMIP). However, resolutions of CMIP models such as CMIP5 are generally around 100-200KMs, which are not high enough to resolve some regional rainfall systems, for instance, the Mei-yu rain belt along the Yangtze River valley. Uncertainty in regional rainfall projection due to model resolution needs to be quantified.

Recently, Dr. CHEN Xiaolong and Prof. ZHOU Tianjun from the Institute of Atmospheric Physics, Chinese Academy of Sciences, cooperating with Drs. Peili WU and Malcolm ROBERTS from Hadley Centre, UK Met Office, investigated the effect of model resolution on the mei-yu rainfall projection using the Hadley Centre's latest climate model, HadGEM3-GC2. The high-resolution HadGEM3-GC2 (N216, ~60km) projects large increases of summer rainfall under two representative concentration pathway scenarios (RCP8.5 and RCP4.5) whereas the low-resolution (N96, ~130km) shows a decrease. A larger increase of projected Mei-yu rainfall in higher-resolution models is also observed across the CMIP5 ensemble.

Why do climate models employing different resolutions show such large differences in the projected rainfall changes?

"Based on moist static energy and moisture budget analysis, we find that the deficient energy moist static energy advection and moisture convergence by stationary eddies (mainly in the meridional direction) in N96 (~130km) is attributed to the projected weaker upward motion and less mei-yu rainfall", Dr. CHEN said.

A large-scale manifestation of the anomalous stationary eddies is the contrasting response to the same warming scenario by the western North Pacific subtropical high (WNPSH), which keeps unchanged in N216 (~60km) but retreats evidently eastward in N96 (~130km) as CMIP5 models. Interactions between high-latitude wave activity and low-latitude convection are dynamical reasons for the distinct responses of WNPSH in high and low resolution HadGEM3-GC2. With unchanged circulation in N216, more moisture in warmer climate will increase the projected Mei-yu rainfall, whereas eastward retreat too much in N96 impedes moist static energy and moisture being transported into the Mei-yu region.

"This investigation highlights the need of high resolution models in future climate change projections. While climate models used in the past CMIPs are generally low resolution models, I am happy to see that in the ongoing CMIP6 there is a high resolution models inter-comparion project, the results will be helpful to further clarifying the resolution-dependence of rainfall projection". The corresponding author of the investigation, Prof. ZHOUTianjun, highlighted.
The result has been published in Journal of Climate.

Institute of Atmospheric Physics, Chinese Academy of Sciences

Related Climate Models Articles from Brightsurf:

Polar ice, atmospheric water vapor biggest drivers of variation among climate models
A Florida State University researcher is part of a team that has found varying projections on global warming trends put forth by climate change scientists can be explained by differing models' predictions regarding ice loss and atmospheric water vapor.

Revising climate models with new aerosol field data
Advanced field measurements of how quickly aerosol particles are pulled out of the air can help improve climate predictions - and air quality forecasts.

Simpler models may be better for determining some climate risk
Typically, computer models of climate become more and more complex as researchers strive to capture more details of our Earth's system, but according to a team of Penn State researchers, to assess risks, less complex models, with their ability to better sample uncertainties, may be a better choice.

Atmospheric scientists study fires to resolve ice question in climate models
Black carbon from fires is an important short-term climate driver because it can affect the formation and composition of clouds.

New soil models may ease atmospheric CO2, climate change
To remove carbon dioxide from the Earth's atmosphere in an effort to slow climate change, scientists must get their hands dirty and peek underground.

Patterns in permafrost soils could help climate change models
A team of scientists spent the past four summers measuring permafrost soils across a 5,000 square-mile swath of Alaska's North Slope.

Latest climate models show more intense droughts to come
An analysis of new climate model projections by Australian researchers from the ARC Centre of Excellence for Climate Extremes shows southwestern Australia and parts of southern Australia will see longer and more intense droughts due to a lack of rainfall caused by climate change.

Some of the latest climate models provide unrealistically high projections of future warming
A new study from University of Michigan climate researchers concludes that some of the latest-generation climate models may be overly sensitive to carbon dioxide increases and therefore project future warming that is unrealistically high.

A Europe covered in grasslands or forests: innovation and research on climate models
An experiment to better understand how atmospheric variables respond to land use changes.

How tiny water droplets form can have a big impact on climate models
Droplets and bubbles are formed nearly everywhere, from boiling our morning coffee, to complex industrial processes and even volcanic eruptions.

Read More: Climate Models News and Climate Models Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to