Nav: Home

Study: Human wastewater valuable to global agriculture, economics

August 16, 2018

CHAMPAIGN, Ill. -- It may seem off-putting to some, but human waste is full of nutrients that can be recycled into valuable products that could promote agricultural sustainability and better economic independence for some developing countries.

Cities produce and must manage huge quantities of wastewater. Researchers at the University of Illinois at Urbana-Champaign have developed a model to clarify what parts of the world may benefit most from re-circulation of human-waste-derived nitrogen, potassium and phosphorus from cities and back into farm fields. They report their findings in the journal Nature Sustainability.

"We grow our crops in the field, apply nutrient-rich fertilizers, eat the crops, excrete all of the nitrogen, phosphorus and potassium and then those nutrients end up at the wastewater treatment plant," said Jeremy Guest, a civil and environmental engineering professor and study co-author. "It is a very linear, one-directional flow of resources. Engineering a more circular nutrient cycle would create opportunities that could benefit the environment, economy and agriculture."

The team's exploratory exercise examined 56 of the largest cities across six continents to assess the feasibility of human-waste-derived nutrient recirculation. They looked at factors like transport distance, population and cropland density, crop nutrient requirements and what types of products would do best where.

"In some cases, wastewater that has been treated for safety can be used to simultaneously irrigate and fertilize crops," said John Trimmer, an Illinois graduate student and lead author on the study.

Treated wastewater is an option for places where crops grow close to cities, such as many parts of Africa, Asia and Europe. However, water is challenging to transport because of its weight and relatively low nutrient content, so it is not a good option when nutrients must travel longer distances to reach farmland, the researchers said.

"In some cities, we would need to use more advanced technology to recover a more concentrated product suitable for longer transport distances," Guest said. "These are similar to the crystalized fertilizers that we are accustomed to and, in most cases, the technology to produce these from human waste is well established."

The study shows that a variety of cities throughout the world could benefit from this proposed sustainability approach - not only for helping grow crops, but also for their economic independence.

"We found, for example, that in Cairo, Egypt, if all of the nitrogen resources from wastewater were utilized, the city could cut Egypt's nitrogen fertilizer imports by roughly half," Trimmer said. "This type of approach could also help smallholder farmers in places like Sub-Saharan Africa gain better access to fertilizer than what is currently available."

The study also identifies parts of the world where nutrient recirculation may have less impact.

"Most of the population centers we looked at throughout the U.S. don't appear to be the best candidates," Trimmer said. "For example, places like New York and Boston are too far from intense agriculture areas. However, the Midwest - Chicago in particular - did a bit better in our analysis."

The team acknowledges that there are limitations to this type of exercise.

"Because this was developed as a global analysis, the method does not allow us to examine specifics for each city, like the driving routes to haul nutrients or locations of wastewater plants, among other details," Guest said. "The results of this exercise should be taken as estimates of nutrient transport distances and are useful for identifying broad trends and locations that may warrant further investigation into reuse strategies."
-end-
The Illinois Distinguished Fellowship at the University of Illinois at Urbana-Champaign supported this research.

Editor's notes: To reach Jeremy Guest, call 217-244-9247; jsguest@illinois.edu.

The paper "Recirculation of human-derived nutrients from cities to agriculture across six continents" is available online and from the U. of I. News Bureau.

DOI: 10.1038/s41893-018-0118-9

University of Illinois at Urbana-Champaign

Related Nitrogen Articles:

'Black nitrogen'
In the periodic table of elements there is one golden rule for carbon, oxygen, and other light elements.
A deep dive into better understanding nitrogen impacts
This special issue presents a selection of 13 papers that advance our understanding of cascading consequences of reactive nitrogen species along their emission, transport, deposition, and the impacts in the atmosphere.
How does an increase in nitrogen application affect grasslands?
The 'PaNDiv' experiment, established by researchers of the University of Bern on a 3000 m2 field site, is the largest biodiversity-ecosystem functioning experiment in Switzerland and aims to better understand how increases in nitrogen affect grasslands.
Reducing reliance on nitrogen fertilizers with biological nitrogen fixation
Crop yields have increased substantially over the past decades, occurring alongside the increasing use of nitrogen fertilizer.
Flushing nitrogen from seawater-based toilets
With about half the world's population living close to the coast, using seawater to flush toilets could be possible with a salt-tolerant bacterium.
We must wake up to devastating impact of nitrogen, say scientists
More than 150 top international scientists are calling on the world to take urgent action on nitrogen pollution, to tackle the widespread harm it is causing to humans, wildlife and the planet.
How nitrogen-fixing bacteria sense iron
New research reveals how nitrogen-fixing bacteria sense iron - an essential but deadly micronutrient.
Corals take control of nitrogen recycling
Corals use sugar from their symbiotic algal partners to control them by recycling nitrogen from their own ammonium waste.
Foraging for nitrogen
As sessile organisms, plants rely on their ability to adapt the development and growth of their roots in response to changing nutrient conditions.
Inert nitrogen forced to react with itself
Direct coupling of two molecules of nitrogen: chemists from Würzburg and Frankfurt have achieved what was thought to be impossible.
More Nitrogen News and Nitrogen Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: Meditations on Loneliness
Original broadcast date: April 24, 2020. We're a social species now living in isolation. But loneliness was a problem well before this era of social distancing. This hour, TED speakers explore how we can live and make peace with loneliness. Guests on the show include author and illustrator Jonny Sun, psychologist Susan Pinker, architect Grace Kim, and writer Suleika Jaouad.
Now Playing: Science for the People

#565 The Great Wide Indoors
We're all spending a bit more time indoors this summer than we probably figured. But did you ever stop to think about why the places we live and work as designed the way they are? And how they could be designed better? We're talking with Emily Anthes about her new book "The Great Indoors: The Surprising Science of how Buildings Shape our Behavior, Health and Happiness".
Now Playing: Radiolab

The Third. A TED Talk.
Jad gives a TED talk about his life as a journalist and how Radiolab has evolved over the years. Here's how TED described it:How do you end a story? Host of Radiolab Jad Abumrad tells how his search for an answer led him home to the mountains of Tennessee, where he met an unexpected teacher: Dolly Parton.Jad Nicholas Abumrad is a Lebanese-American radio host, composer and producer. He is the founder of the syndicated public radio program Radiolab, which is broadcast on over 600 radio stations nationwide and is downloaded more than 120 million times a year as a podcast. He also created More Perfect, a podcast that tells the stories behind the Supreme Court's most famous decisions. And most recently, Dolly Parton's America, a nine-episode podcast exploring the life and times of the iconic country music star. Abumrad has received three Peabody Awards and was named a MacArthur Fellow in 2011.