Nav: Home

Creeping reduces quake risk on Berkeley fault, say Science authors

August 17, 2000

Washington D.C.--A new model of the northern Hayward Fault in California's San Francisco Bay Area suggests that a major earthquake along that portion of the fault may be less likely than previously suspected, according to a report in the 18 August issue of the journal Science.

The Hayward fault is one of the major branches of the well-known San Andreas Fault System that crisscrosses coastal California. In 1868, a major earthquake of magnitude 7 occurred on the southern portion of the Hayward, rupturing over a distance of 40 to 50 kilometers between the cities of Fremont and Berkeley.

Many scientists have traditionally believed that there is a high probability of a major earthquake on the northern portion of the fault within the next 30 years, potentially endangering lives and property in the area.

But a type of fault motion called aseismic creep, say the Science researchers, may be relieving strain on the northern portion of the fault.

"The likelihood of a large earthquake originating and centering on the northern Hayward fault alone is rather low," says the study's lead author Roland Bürgmann of the University of California, Berkeley.

Fault zone properties like temperature, stress, fluids, and the type of rock help determine whether the adjacent crustal blocks of a fault move past each other in the relatively abrupt, stick-and-slip motion that causes earthquakes, or in a more gradual, smooth motion called aseismic creep. Since at least the turn of the century, the northern Hayward fault has been showing telltale signs along its surface trace--including diverted street curbs, wavering fence lines, and cracked and distorted buildings--of aseismic creep.

These surface creep rates lag behind long-term slip rates for the fault, however, suggesting that the creep only extends for a shallow distance below the surface and that the fault is "locked" at a deeper level below, accumulating strain that would be released in a major earthquake.

To test the extent of aseismic creep on the northern Hayward, Bürgmann and colleagues integrated data from global positioning satellite measurements along the fault with satellite radar data and information from clusters of microearthquakes deep within the fault. The researchers combined these data in a model that correlates surface movements with fault slippage at depth, says Bürgmann, allowing them a 3-D glimpse of the fault zone.

Their analysis revealed a slow and aseismic creep at the bottom as well as the top of the fault zone in the northern part of the Hayward. The seismic scenario that best fits their model, say the Science researchers, is of a Hayward Fault with a split personality: a relatively immobile southern half that is locked at depth, adjacent to a freely-slipping northern segment.

Although the deep creep along the northern Hayward indicates that the possibility of a major earthquake along that portion of the fault should be downgraded, Bürgmann says that these findings do not rule out large earthquakes on neighboring fault segments, like the southern half of the Hayward or the Rodgers Creek fault that lies north of the Hayward fault.

"The studies that have been done clearly suggest significant earthquake hazard from these and other faults in the Bay area," says Bürgmann.

Bürgmann also notes that the lower likelihood of a quake on the northern Hayward has no effect on the collateral damage that might occur in this area from nearby fault events that cause significant shaking.
The other members of the research team are D. Schmidt, R. M. Nadeau, M. d'Alessio, T. V. McEvilly, and M. H. Murray at University of California, Berkeley, E. Fielding at California Institute of Technology, and D. Manaker at University of California, Davis. Funding for this work was supported by grants from the NSF Geophysics program, NASA's Solid Earth and Natural Hazards program, and the U.S. Geological Survey (USGS) NEHRP program.

American Association for the Advancement of Science

Related Data Articles:

Discrimination, lack of diversity, & societal risks of data mining highlighted in big data
A special issue of Big Data presents a series of insightful articles that focus on Big Data and Social and Technical Trade-Offs.
Journal AAS publishes first data description paper: Data collection and sharing
AAS published its first data description paper on June 8, 2017.
73 percent of academics say access to research data helps them in their work; 34 percent do not publish their data
Combining results from bibliometric analyses, a global sample of researcher opinions and case-study interviews, a new report reveals that although the benefits of open research data are well known, in practice, confusion remains within the researcher community around when and how to share research data.
Designing new materials from 'small' data
A Northwestern and Los Alamos team developed a novel workflow combining machine learning and density functional theory calculations to create design guidelines for new materials that exhibit useful electronic properties, such as ferroelectricity and piezoelectricity.
Big data for the universe
Astronomers at Lomonosov Moscow State University in cooperation with their French colleagues and with the help of citizen scientists have released 'The Reference Catalog of galaxy SEDs,' which contains value-added information about 800,000 galaxies.
What to do with the data?
Rapid advances in computing constantly translate into new technologies in our everyday lives.
Why keep the raw data?
The increasingly popular subject of raw diffraction data deposition is examined in a Topical Review in IUCrJ.
Infrastructure data for everyone
How much electricity flows through the grid? When and where?
Finding patterns in corrupted data
A new 'robust' statistical method from MIT enables efficient model fitting with corrupted, high-dimensional data.
Big data for little creatures
A multi-disciplinary team of researchers at UC Riverside has received $3 million from the National Science Foundation Research Traineeship program to prepare the next generation of scientists and engineers who will learn how to exploit the power of big data to understand insects.

Related Data Reading:

Everybody Lies: Big Data, New Data, and What the Internet Can Tell Us About Who We Really Are
by Seth Stephens-Davidowitz (Author)

Storytelling with Data: A Data Visualization Guide for Business Professionals
by Cole Nussbaumer Knaflic (Author)

Data Science for Business: What You Need to Know about Data Mining and Data-Analytic Thinking
by Foster Provost (Author), Tom Fawcett (Author)

Designing Data-Intensive Applications: The Big Ideas Behind Reliable, Scalable, and Maintainable Systems
by Martin Kleppmann (Author)

Data Smart: Using Data Science to Transform Information into Insight
by John W. Foreman (Author)

Data Wise, Revised and Expanded Edition: A Step-by-Step Guide to Using Assessment Results to Improve Teaching and Learning
by Kathryn Parker Boudett (Editor), Elizabeth A. City (Editor), Richard J. Murnane (Editor)

Dear Data
by Giorgia Lupi (Author), Stefanie Posavec (Author), Maria Popova (Foreword)

Python for Data Analysis: Data Wrangling with Pandas, NumPy, and IPython
by Wes McKinney (Author)

R for Data Science: Import, Tidy, Transform, Visualize, and Model Data
by Hadley Wickham (Author), Garrett Grolemund (Author)

Best Science Podcasts 2018

We have hand picked the best science podcasts for 2018. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

The Right To Speak
Should all speech, even the most offensive, be allowed on college campuses? And is hearing from those we deeply disagree with ... worth it? This hour, TED speakers explore the debate over free speech. Guests include recent college graduate Zachary Wood, political scientist Jeffrey Howard, novelist Elif Shafak, and journalist and author James Kirchick.
Now Playing: Science for the People

#486 Volcanoes
This week we're talking volcanoes. Because there are few things that fascinate us more than the amazing, unstoppable power of an erupting volcano. First, Jessica Johnson takes us through the latest activity from the Kilauea volcano in Hawaii to help us understand what's happening with this headline-grabbing volcano. And Janine Krippner joins us to highlight some of the lesser-known volcanoes that can be found in the USA, the different kinds of eruptions we might one day see at them, and how damaging they have the potential to be. Related links: Kilauea status report at USGS A beginner's guide to Hawaii's otherworldly...