Nav: Home

Agricultural methods of early civilizations may have altered global climate, study suggests

August 17, 2009

Massive burning of forests for agriculture thousands of years ago may have increased atmospheric carbon dioxide enough to alter global climate and usher in a warming trend that continues today, according to a new study that appears online Aug. 17 in the journal Quaternary Science Reviews.

Researchers at the University of Virginia and the University of Maryland-Baltimore County say that today's 6 billion people use about 90 percent less land per person for growing food than was used by far smaller populations early in the development of civilization. Those early societies likely relied on slash-and-burn techniques to clear large tracts of land for relatively small levels of food production.

"They used more land for farming because they had little incentive to maximize yield from less land, and because there was plenty of forest to burn," said William Ruddiman, the lead author and a professor emeritus of environmental sciences at the University of Virginia. "They may have inadvertently altered the climate."

Ruddiman is a climate scientist who specializes in investigating ocean-sediment and ice-core records. In recent years he has searched across scientific disciplines - anthropology, archaeology, population dynamics, climatology - to gain insight into how humans may have affected climate over the millennia.

He said that early populations likely used a land-clearing method that involved burning forests, then planting crop seed among the dead stumps in the enriched soil. They would use a large plot until the yield began to decline, and then would burn off another area of forest for planting.

They would continue this form of rotation farming, ever expanding the cleared areas as their populations grew. They possibly cleared five or more times more land than they actually farmed at any given time. It was only as populations grew much larger, and less land was available for farming or for laying fallow, that societies adopted more intensive farming techniques and slowly gained more food yield from less land.

Ruddiman notes that with the highly efficient and intensive farming of today, growing populations are using less land per capita for agriculture. Forests are returning in many parts of the world, including the northeastern United States, Europe, Canada, Russia and even parts of China.

The positive environmental effects of this reforestation, however, are being canceled out by the large-scale burning of fossil fuels since the advent of the Industrial Revolution, which began about 150 years ago. Humans continue to add excessive levels of carbon dioxide to the atmosphere, contributing to a global warming trend, Ruddiman said.

Five years ago, Ruddiman made headlines with a hypothesis that humans began altering global climate thousands of years ago, not just since the Industrial Revolution. That theory has since been criticized by some climate scientists who believe that early populations were too small to create enough carbon dioxide to alter climate.

According to projections from some models of past land use, large-scale land clearing and resulting carbon emissions have only occurred during the industrial era, as a result of huge increases in population.

But Ruddiman, and his co-author Erle Ellis, an ecologist at UMBC who specializes in land-use change, say these models are not accounting for the possibly large effects on climate likely caused by early farming methods.

"Many climate models assume that land use in the past was similar to land use today; and that the great population explosion of the past 150 years has increased land use proportionally," Ellis said. "We are proposing that much smaller earlier populations used much more land per person, and may have more greatly affected climate than current models reflect."

Ruddiman and Ellis based their finding on several studies by anthropologists, archaeologists and paleoecologists indicating that early civilizations used a great amount of land to grow relatively small amounts of food. The researchers compared what they found with the way most land-use models are designed, and found a disconnect between modeling and field-based studies.

"It was only as our populations grew larger over thousands of years, and needed more food, that we improved farming technologies enough to begin using less land for more yield," Ruddiman said. "We suggest in this paper that climate modelers might consider how land use has changed over time, and how this may have affected the climate."

-end-



University of Virginia

Related Agriculture Articles:

Urban agriculture only provides small environmental benefits in northeastern US
'Buy local' sounds like a great environmental slogan, epitomized for city dwellers by urban agriculture.
Scientists say agriculture is good for honey bees
Scientists with the University of Tennessee Institute of Agriculture evaluated the impacts of row-crop agriculture, including the traditional use of pesticides, on honey bee health.
Widely accepted vision for agriculture may be inaccurate, misleading
'Food production must double by 2050 to feed the world's growing population.' This truism has been repeated so often in recent years that it has become widely accepted among academics, policymakers and farmers, but now researchers are challenging this assertion and suggesting a new vision for the future of agriculture.
New effort to promote careers in agriculture, natural resources
A new round of grants from the USDA National Institute of Food and Agriculture is designed to promote careers in agriculture and natural resource management, and educators with the University of Tennessee Departments of Plant Sciences and Agricultural Leadership, Education, and Communications (ALEC) are among the grant recipients.
Corn yield modeling towards sustainable agriculture
Researchers use a 16 year field-experiment dataset to show the ability of a model to fine-tune optimal nitrogen fertilizer rates, and identify five ways it can inform nitrogen management guidelines.
Small-scale agriculture threatens the rainforest
An extensive study led by a researcher at Lund University in Sweden has mapped the effects of small farmers on the rain forests of Southeast Asia for the first time.
Space agriculture topic of symposium
New frontiers of soil and plant sciences may grow crops in space.
Measure of age in soil nitrogen could help precision agriculture
What's good for crops is not always good for the environment.
Invasive species could cause billions in damages to agriculture
Invasive insects and pathogens could be a multi-billion- dollar threat to global agriculture and developing countries may be the biggest target, according to a team of international researchers.
Males were saved by agriculture
The emergence of agriculture is suggested to have driven extensive human population growth.

Best Science Podcasts 2017

We have hand picked the best science podcasts for 2017. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: Radiolab

Oliver Sipple
One morning, Oliver Sipple went out for a walk. A couple hours later, to his own surprise, he saved the life of the President of the United States. But in the days that followed, Sipple's split-second act of heroism turned into a rationale for making his personal life into political opportunity. What happens next makes us wonder what a moment, or a movement, or a whole society can demand of one person. And how much is too much?
Now Playing: TED Radio Hour

Future Consequences
From data collection to gene editing to AI, what we once considered science fiction is now becoming reality. This hour, TED speakers explore the future consequences of our present actions. Guests include designer Anab Jain, futurist Juan Enriquez, biologist Paul Knoepfler, and neuroscientist and philosopher Sam Harris.