NIST uncovers reliability issues for carbon nanotubes in future electronics

August 17, 2011

Carbon nanotubes offer big promise in a small package. For instance, these tiny cylinders of carbon molecules theoretically can carry 1,000 times more electric current than a metal conductor of the same size. It's easy to imagine carbon nanotubes replacing copper wiring in future nanoscale electronics.

But--not so fast. Recent tests at the National Institute of Standards and Technology (NIST) suggest device reliability is a major issue.

Copper wires transport power and other signals among all the parts of integrated circuits; even one failed conductor can cause chip failure. As a rough comparison, NIST researchers fabricated and tested numerous nanotube interconnects between metal electrodes. NIST test results, described at a conference this week,* show that nanotubes can sustain extremely high current densities (tens to hundreds of times larger than that in a typical semiconductor circuit) for several hours but slowly degrade under constant current. Of greater concern, the metal electrodes fail--the edges recede and clump--when currents rise above a certain threshold. The circuits failed in about 40 hours.

While many researchers around the world are studying nanotube fabrication and properties, the NIST work offers an early look at how these materials may behave in real electronic devices over the long term. To support industrial applications of these novel materials, NIST is developing measurement and test techniques and studying a variety of nanotube structures, zeroing in on what happens at the intersections of nanotubes and metals and between different nanotubes. "The common link is that we really need to study the interfaces," says Mark Strus, a NIST postdoctoral researcher.

In another, related study published recently,** NIST researchers identified failures in carbon nanotube networks--materials in which electrons physically hop from tube to tube. Failures in this case seemed to occur between nanotubes, the point of highest resistance, Strus says. By monitoring the starting resistance and initial stages of material degradation, researchers could predict whether resistance would degrade gradually--allowing operational limits to be set--or in a sporadic, unpredictable way that would undermine device performance. NIST developed electrical stress tests that link initial resistance to degradation rate, predictability of failure and total device lifetime. The test can be used to screen for proper fabrication and reliability of nanotube networks.

Despite the reliability concerns, Strus imagines that carbon nanotube networks may ultimately be very useful for some electronic applications. "For instance, carbon nanotube networks may not be the replacement for copper in logic or memory devices, but they may turn out to be interconnects for flexible electronic displays or photovoltaics," Strus says.

Overall, the NIST research will help qualify nanotube materials for next-generation electronics, and help process developers determine how well a structure may tolerate high electric current and adjust processing accordingly to optimize both performance and reliability.
* M.C. Strus, R.R. Keller and N. Barbosa III. Electrical reliability and breakdown mechanisms in single-walled carbon nanotubes. Paper presented at IEEE Nano 2011, Portland, Ore., Aug. 17, 2011.

** M.C. Strus, A.N. Chiaramonti, Y.L. Kim, Y.J. Jung and R.R. Keller. Accelerated reliability testing of highly aligned single-walled carbon nanotube networks subjected to dc electrical stressing. Nanotechnology 22 pp. 265713 (2011).

National Institute of Standards and Technology (NIST)

Related Nanotubes Articles from Brightsurf:

Nanotubes in the eye that help us see
A new mechanism of blood redistribution that is essential for the proper functioning of the adult retina has just been discovered in vivo by researchers at the University of Montreal Hospital Research Centre (CRCHUM).

How plantains and carbon nanotubes can improve cars
Researchers from the University of Johannesburg have shown that plantain, a starchy type of banana, is a promising renewable source for an emerging type of lighter, rust-free composite materials for the automotive industry.

Exotic nanotubes move in less-mysterious ways
Rice University researchers capture the first video of boron nitride nanotubes in motion to prove their potential for materials and medical applications.

Groovy key to nanotubes in 2D
New research offers a groovy answer to the question of what causes carbon nanotubes to align in ultrathin crystalline films discovered at Rice.

Growing carbon nanotubes with the right twist
Researchers synthetize nanotubes with a specific structure expanding previous theories on carbon nanotube growth.

Clean carbon nanotubes with superb properties
Scientists at Aalto University, Finland, and Nagoya University, Japan, have found a new way to make ultra-clean carbon nanotube transistors with superior semiconducting properties.

Watching energy transport through biomimetic nanotubes
Scientists from the University of Groningen (the Netherlands) and the University of W├╝rzburg (Germany) have investigated a simple biomimetic light-harvesting system using advanced spectroscopy combined with a microfluidic platform.

Neural networks will help manufacture carbon nanotubes
A team of scientists from Skoltech's Laboratory of Nanomaterials proposed a neural-network-based method for monitoring the growth of carbon nanotubes, preparing the ground for a new generation of sophisticated electronic devices.

Photovoltaic nanotubes
Physicists discovered a novel kind of nanotube that generates current in the presence of light.

Chemical synthesis of nanotubes
For the first time, researchers used benzene -- a common hydrocarbon -- to create a novel kind of molecular nanotube, which could lead to new nanocarbon-based semiconductor applications.

Read More: Nanotubes News and Nanotubes Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to