Researchers complete first major survey of amphibian fungus in Asia

August 17, 2011

An international team of researchers has completed the first major survey in Asia of a deadly fungus that has wiped out more than 200 species of amphibians worldwide. The massive survey could help scientists zero in on why the fungus has been unusually devastating in many parts of the globe -- and why Asian amphibians have so far been spared the same dramatic declines.

The disease chytridiomycosis, caused by the fungus Batrachochytrium dendrobatidis or Bd, is the culprit behind amphibian extinctions in Central, South and North America, Australia and Europe. The new Asian survey of the fungus, which was published Aug. 16 in the journal PLoS One, shows that Bd is prevalent at very low levels in the region.

Asia is home to a highly diverse set of amphibian species, and potentially could be vulnerable to Bd. But Vance Vredenburg, assistant professor of biology at San Francisco State University, said very little is known about the fungus and its impact on the health of amphibians in Asia.

"That's why we're excited about this first really big survey," said Vredenburg, who led the research team. "If you look at chytrid worldwide, Asia's been the black hole in our data."

From 2001 to 2009, Vredenburg and his colleagues surveyed more than 3,000 amphibians -- mostly frogs -- from 15 Asian countries, swabbing the toe webbing, thigh and abdomen of the animals to pick up any signs of Bd, which infects the skin of amphibians.

They found that the prevalence of Bd was very low throughout the region, appearing in only 2.35 percent of the frogs. The Philippines, Kyrgyzstan, Laos, Indonesia, Malaysia and South Korea were the only countries with any Bd infection.

The survey suggests that Bd is either emerging in Asia, or may have been in Asia at low levels for a long time or that some other factor is preventing Bd "from fully invading Asian amphibians," the researchers write.

Each site in the study was only surveyed once, Vredenburg explained, so it's difficult to determine whether Bd infections in the countries are newly expanding. It will be critical, he said, "to see how Bd prevalence is changing through time, because this is key to understanding the ultimate outcome of the disease."

If Bd has been in Asia for a long time, researchers would like to know why amphibians there have managed to co-exist with a fungus that has proved so destructive elsewhere. It is possible, for instance, that Asian amphibians might bear some sort of bacterial protection against Bd in their skins.

Other scientists are analyzing the genes of the Bd fungus collected globally, Vredenburg said, "to find out whether strains from different parts of the world also differ in their virulence."

Vredenburg said the possibility of another wave of extinctions highlights the need to follow the Asian survey with further research to answer all of these questions.

And if Asia is on the brink of a chytrid epidemic, Vredenburg and colleagues think it might start in the Philippines. "The prevalence and intensity of Bd infection is much higher here than anywhere else in Asia," he said. "Bd in the Philippines today looks similar to Bd in early outbreaks in California and South and Central America."

"This study is the first important step to understanding Bd in Asia," Vredenburg said. "It provides a solid foundation that future studies can build upon."
-end-
Vance Vredenburg can be reached at (415) 338-7296 (office) or vancev@sfsu.edu

The paper can be found online at: http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0023179

Photos are available from Elaine Bible at SF State's Office of University Communications, (415) 405-3606, ebible@sfsu.edu

Vance T. Vredenburg is an assistant professor of biology at San Francisco State University. He is also a Research Associate at the Museum of Vertebrate Zoology at the University of California, Berkeley and California Academy of Sciences. Vredenburg is the co-founder of AmphibiaWeb.org (www.amphibiaweb.org) an online bioinformatics project promoting science and conservation of the world's amphibians.

San Francisco State University

Related Fungus Articles from Brightsurf:

International screening of the effects of a pathogenic fungus
The pathogenic fungus Candida auris, which first surfaced in 2009, is proving challenging to control.

Research breakthrough in fight against chytrid fungus
For frogs dying of the invasive chytridiomycosis disease, the leading cause of amphibian deaths worldwide, the genes responsible for protecting them may actually be leading to their demise, according to a new study published today in the journal Molecular Ecology by University of Central Florida and the Smithsonian Conservation Biology Institute (SCBI) researchers.

Researchers look to fungus to shed light on cancer
A team of Florida State University researchers from the Department of Chemistry and Biochemistry found that a natural product from the fungus Fusicoccum amygdali stabilizes a family of proteins in the cell that mediate important signaling pathways involved in the pathology of cancer and neurological diseases.

The invisibility cloak of a fungus
The human immune system can easily recognize fungi because their cells are surrounded by a solid cell wall of chitin and other complex sugars.

Taming the wild cheese fungus
The flavors of fermented foods are heavily shaped by the fungi that grow on them, but the evolutionary origins of those fungi aren't well understood.

Candida auris is a new drug-resistant fungus emerging globally and in the US early detection is key to controlling spread of deadly drug-resistant fungus
Early identification of Candida auris, a potentially deadly fungus that causes bloodstream and intra-abdominal infections, is the key to controlling its spread.

Genetic blueprint for extraordinary wood-munching fungus
The first time someone took note of Coniochaeta pulveracea was more than two hundred years ago, when the South African-born mycologist Dr Christiaan Hendrik Persoon mentioned it in his 1797 book on the classification of fungi.

How a fungus can cripple the immune system
An international research team led by Professor Oliver Werz of Friedrich Schiller University, Jena, has now discovered how the fungus knocks out the immune defenses, enabling a potentially fatal fungal infection to develop.

North American checklist identifies the fungus among us
Some fungi are smelly and coated in mucus. Others have gills that glow in the dark.

Tropical frogs found to coexist with deadly fungus
In 2004, the frogs of El Copé, Panama, began dying by the thousands.

Read More: Fungus News and Fungus Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.