Life on the wind: Study reveals how microbes travel the Earth

August 17, 2011

Scientists from the UK and Switzerland have investigated the remarkable distance that microorganisms may be able to blow between continents, raising questions about their potential to colonise new lands and also potentially to spread diseases.

The researchers from Liverpool John Moores University (LJMU), Swiss Federal Institute for Forest, Snow and Landscape Research (WSL) and the Ecole Polytechnique Fédérale de Lausanne (EPFL) the University of Neuchâtel published their results in the Journal of Biogeography this month. They used large computer models of the Earth's atmosphere to study how widely microbes could be dispersed.

LJMU's Dr Dave Wilkinson led the team along with Symeon Koumoutsaris, from the International Space Science Institute in Bern, who modified computer models which were designed for studying the dispersal of dust particles. They looked at what would happen if they released virtual microbes from both the southern tip of South America and also from Mexico. Once airborne, microbes of 0.02mm in diameter and below can easily travel thousands of kilometres.

Dr Dave Wilkinson, LJMU School of Natural Science and Psychology, explained:

"Microbes less than 0.009 mm across went as far as Australia! These sizes would include microbes such as bacteria and many amoebae and also some fungal spores. We found that for smaller microbes, once airborne, dispersal is remarkably successful over a 1-year period. The most striking results are the extensive within-hemisphere distribution of small virtual microbes and the lack of dispersal between the Northern and Southern Hemispheres during the year-long time-scale of our simulations.

What our models show is that only the smallest microbes travel easily between continents. The larger ones (i.e. Larger than 20μm but still 500 times smaller than the 1mm threshold previously believed to separate the "cosmopolitan organisms" from those with potential biogeographies) cannot easily travel between continents on the time span of a single year. This is an important result as it very significantly increases the potential for microbial diversity."

Most microbes carried by wind are likely to be harmless, but outbreaks of certain disease such as meningitis in the Sahel region of Africa and foot and mouth disease have been linked to airborne microbes in the past.

"We stress that our model looks at only one aspect of microbial dispersal - namely airborne transport to a new site. Once a microbe arrives, it clearly needs to reproduce, including potentially competing with microbes already at that location," Dr Wilkinson concluded. "Given the ease with which the smaller microbes disperse in our model it is possible that this (rather than dispersal itself) may be the rate-limiting step in many cases of microbial range expansion and this topic should form the topic for future research in this area."
-end-


Wiley

Related Microbes Articles from Brightsurf:

A new look at deep-sea microbes
Microbes found deeper in the ocean are believed to have slow population turnover rates and low amounts of available energy.

Microbes might manage your cholesterol
Researchers discover a link between human blood cholesterol levels and a gene in the microbiome that could one day help people manage their cholesterol through diet, probiotics, or entirely new types of treatment.

Can your gut microbes tell you how old you really are?
Harvard longevity researchers in collaboration with Insilico Medicine develop the first AI-powered microbiomic aging clock

What can be learned from the microbes on a turtle's shell?
Research published in the journal Microbiology has found that a unique type of algae, usually only seen on the shells of turtles, affects the surrounding microbial communities.

Life, liberty -- and access to microbes?
Poverty increases the risk for numerous diseases by limiting people's access to healthy food, environments and stress-free conditions.

Rye is healthy, thanks to an interplay of microbes
Eating rye comes with a variety of health benefits. A new study from the University of Eastern Finland now shows that both lactic acid bacteria and gut bacteria contribute to the health benefits of rye.

Gut microbes may affect the course of ALS
Researchers isolated a molecule that may be under-produced in the guts of patients.

Gut microbes associated with temperament traits in children
Scientists in the FinnBrain research project of the University of Turku discovered that the gut microbes of a 2.5-month-old infant are associated with the temperament traits manifested at six months of age.

Gut microbes eat our medication
Researchers have discovered one of the first concrete examples of how the microbiome can interfere with a drug's intended path through the body.

Microbes can grow on nitric oxide
Nitric oxide (NO) is a central molecule of the global nitrogen cycle.

Read More: Microbes News and Microbes Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.