'Cavity protection effect' helps to conserve quantum information

August 17, 2014

The electronics we use for our computers only knows two different states: zero or one. Quantum systems on the other hand can be in different states at once, they can store a superposition of "zero" and "one". This phenomenon could be used to build ultrafast quantum computers, but there are several technological obstacles that have to be overcome first. The biggest problem is that quantum states are quickly destroyed due to interactions with the environment. At TU Wien (Vienna), scientists have now succeeded in using a protection effect to enhance the stability of a particularly promising quantum system.

A Quantum Computer Made of Two Systems

There are various concepts for possible quantum computers. "What we use is a hybrid system of two completely different quantum technologies", says Johannes Majer. Together with his team, he couples microwaves and atoms, investigating and building a new type of quantum memory. The theorists Dmitry Krimer and Stefan Rotter developed a theoretical model describing the complex dynamics in such hybrid quantum systems.

In a microwave resonator, photons are created. They interact with the spin of nitrogen atoms, which are built into a diamond. The microwave resonator can be used to quickly transport quantum information. The atomic spins in the diamond can store it - at least for a period of several hundred nanoseconds, which is long compared to the time scale on which photons move in the microwave resonator.

"All nitrogen atoms are completely identical. But when they are placed in slightly different surroundings, they have slightly different transition frequencies", says Stefan Putz, PhD-student at Vienna University of Technology. The atomic spins behave like a room full of pendulum clocks. Initially they may oscillate in sync, but as they can never be precisely identical, they eventually lose their rhythm, creating random noise.

Coupling Causes Order

"By creating a strong coupling between the atomic spins and the resonator, it is possible to dramatically prolong the time during which the spins oscillate in strict time - if their energy levels obey the right distribution", says Dmitry Krimer. The atomic spins do not directly interact with each other, but the mere fact that they are collectively coupled to the microwave resonator prevents them from changing into a state in which they cannot be used for processing quantum information any longer. This protection effect considerably enhances the duration in which quantum information can be read out from the atomic spins.

"Improving the quantum coherence time with this cavity protection effect opens up many promising applications for our hybrid quantum system", says Johannes Majer. The paper has now been published in Nature Physics.
Further information
Dr. Johannes Majer
Institute for Atomic and Subatomic Physics
TU Wien
Stadionallee 2, 1020 Wien
T: +43-1-58801-141838

Vienna University of Technology

Related Quantum Computers Articles from Brightsurf:

Optical wiring for large quantum computers
Researchers at ETH have demonstrated a new technique for carrying out sensitive quantum operations on atoms.

New algorithm could unleash the power of quantum computers
A new algorithm that fast forwards simulations could bring greater use ability to current and near-term quantum computers, opening the way for applications to run past strict time limits that hamper many quantum calculations.

A new technique prevents errors in quantum computers
A paper recently published in Nature presents a protocol allowing for the error detection and the protection of quantum processors in case of qubit loss.

New method prevents quantum computers from crashing
Quantum information is fragile, which is why quantum computers must be able to correct errors.

Natural radiation can interfere with quantum computers
Radiation from natural sources in the environment can limit the performance of superconducting quantum bits, known as qubits.

New model helps to describe defects and errors in quantum computers
A summer internship in Bilbao, Spain, has led to a paper in the journal Physical Review Letters for Jack Mayo, a Master's student at the University of Groningen, the Netherlands.

The first intuitive programming language for quantum computers
Several technical advances have been achieved recently in the pursuit of powerful quantum computers.

Hot qubits break one of the biggest constraints to practical quantum computers
A proof-of-concept published today in Nature promises warmer, cheaper and more robust quantum computing.

Future quantum computers may pose threat to today's most-secure communications
Quantum computers that are exponentially faster than any of our current classical computers and are capable of code-breaking applications could be available in 12 to 15 years, posing major risks to the security of current communications systems, according to a new RAND Corporation report.

Novel error-correction scheme developed for quantum computers
Experimental quantum computers are plagued with errors. Here Dr Arne Grimsmo from the University of Sydney and colleagues from RMIT and the University of Queensland offer a novel method to reduce errors in a scheme applicable across different types of quantum hardware.

Read More: Quantum Computers News and Quantum Computers Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.