Nav: Home

Babies' spatial reasoning predicts later math skills

August 17, 2016

Spatial reasoning measured in infancy predicts how children do at math at four years of age, finds a new study published in Psychological Science.

"We've provided the earliest documented evidence for a relationship between spatial reasoning and math ability," says Emory University psychologist Stella Lourenco, whose lab conducted the research. "We've shown that spatial reasoning beginning early in life, as young as six months of age, predicts both the continuity of this ability and mathematical development."

Emory graduate student Jillian Lauer is co-author of the study.

The researchers controlled the longitudinal study for general cognitive abilities of the children, including measures such as vocabulary, working memory, short-term spatial memory and processing speed.

"Our results suggest that it's not just a matter of smarter infants becoming smarter four-year-olds," Lourenco says. "Instead, we believe that we've honed in on something specific about early spatial reasoning and math ability."

The findings may help explain why some people embrace math while others feel they are bad at it and avoid it. "We know that spatial reasoning is a malleable skill that can be improved with training," Lourenco says. "One possibility is that more focus should be put on spatial reasoning in early math education."

Previous research has shown that superior spatial aptitude at 13 years of age predicts professional and creative accomplishments in the fields of science, technology, engineering and math more than 30 years later.

To explore whether individual differences in spatial aptitude are present earlier, Lourenco's lab tested 63 infants, ages six months to 13 months, for a visual-spatial skill known as mental transformation, or the ability to transform and rotate objects in "mental space." Mental transformation is considered a hallmark of spatial intelligence.

The researchers showed the babies a series of paired video streams. Both streams presented a series of two matching shapes, similar to Tetris tile pieces, which changed orientation in each presentation. In one of the video streams, the two shapes in every third presentation rotated to become mirror images. In the other video stream, the shapes only appeared in non-mirror orientations. Eye tracking technology recorded which video stream the infants looked at, and for how long.

This type of experiment is called a change-detection paradigm. "Babies have been shown to prefer novelty," Lourenco explains. "If they can engage in mental transformation and detect that the pieces occasionally rotate into a mirror position, that's interesting to them because of the novelty."

Eye-tracking technology allowed the researchers to measure where the babies looked, and for how long. As a group, the infants looked significantly longer at the video stream with mirror images, but there were individual differences in the amount of time they looked at it.

Fifty-three of the children, or 84 percent of the original sample, returned at age four to complete the longitudinal study. The participants were again tested for mental transformation ability, along with mastery of simple symbolic math concepts. The results showed that the children who spent more time looking at the mirror stream of images as infants maintained these higher mental transformation abilities at age four, and also performed better on the math problems.

High-level symbolic math came relatively late in human evolution. Previous research has suggested that symbolic math may have co-opted circuits of the brain involved in spatial reasoning as a foundation to build on.

"Our work may contribute to our understanding of the nature of mathematics," Lourenco says. "By showing that spatial reasoning is related to individual differences in math ability, we've added to a growing literature suggesting a potential contribution for spatial reasoning in mathematics. We can now test the causal role that spatial reasoning may play early in life."

In addition to helping improve regular early math education, the finding could help in the design of interventions for children with math disabilities. Dyscalculia, for example, is a developmental disorder that interferes with doing even simple arithmetic.

"Dyscalculia has an estimated prevalence of five to seven percent, which is roughly the same as dyslexia," Lourenco says. "Dyscalculia, however, has generally received less attention, despite math's importance to our technological world."
-end-


Emory Health Sciences

Related Children Articles:

Do children inherently want to help others?
A new special section of the journal Child Development includes a collection of ten empirical articles and one theoretical article focusing on the predictors, outcomes, and mechanisms related to children's motivations for prosocial actions, such as helping and sharing.
Children need conventional CPR; black and Hispanic children more likely to get Hands-Only
While compressions-only or Hands-Only CPR is as good as conventional CPR for adults, children benefit more from the conventional approach that includes rescue breaths.
Cohen Children's Medical Center study: Children on autism spectrum more likely to wander, disappear
A new study by researchers at Cohen Children's Medical Center of New York suggests that more than one-quarter million school-age children with autism spectrum disorder or other developmental disorders wander away from adult supervision each year.
The importance of children at play
Research highlights positive strengths in developmental learning for Latino children in low-income households based on their interactive play skills.
Racial disparities in pain children of children with appendicitis in EDs
Black children were less likely to receive any pain medication for moderate pain and less likely to receive opioids for severe pain than white children in a study of racial disparities in the pain management of children with appendicitis in emergency departments, according to an article published online by JAMA Pediatrics.
More Children News and Children Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Teaching For Better Humans
More than test scores or good grades — what do kids need to prepare them for the future? This hour, guest host Manoush Zomorodi and TED speakers explore how to help children grow into better humans, in and out of the classroom. Guests include educators Olympia Della Flora and Liz Kleinrock, psychologist Thomas Curran, and writer Jacqueline Woodson.
Now Playing: Science for the People

#535 Superior
Apologies for the delay getting this week's episode out! A technical glitch slowed us down, but all is once again well. This week, we look at the often troubling intertwining of science and race: its long history, its ability to persist even during periods of disrepute, and the current forms it takes as it resurfaces, leveraging the internet and nationalism to buoy itself. We speak with Angela Saini, independent journalist and author of the new book "Superior: The Return of Race Science", about where race science went and how it's coming back.