Nav: Home

Sulfoxaflor found to be less harmful to insect predators than broad-spectrum insecticides

August 17, 2016

A new study appearing in the Journal of Economic Entomology has found that the selective insecticide sulfoxaflor is just as effective at controlling soybean aphids (Aphis glycines) as broad-spectrum insecticides, without causing significant harm to some beneficial predators of the aphid.

The study provides evidence that selective insecticides like sulfoxaflor could play a larger role in integrated pest management, which attempts to minimize the adverse impact on beneficial insects while effectively controlling pests.

"This study provides the first evaluation of the compatibility of novel selective insecticide with natural enemies for management of A. glycines in soybean production," the authors wrote. "Because management of A. glycines in the north central United States currently relies primarily on foliar applications of only two modes of action (pyrethroid and organophosphate insecticides), there is risk of A. glycines developing insecticide resistance. The availability of an additional effective insecticide of a different mode of action would improve insecticide rotations for A. glycines management and help postpone the development of insecticide resistance."

Last fall, the U.S. Environmental Protection Agency (EPA) issued a cancellation order for products containing sulfoxaflor after the Ninth Circuit Court of Appeals ruled that the EPA had not adequately determined the pesticide's effect on honey bees. The EPA had approved the use of sulfoxaflor in May 2013. Currently, the Agency has proposed registration of sulfoxaflor with restrictions on application to pollinator-attractive crops, while it gathers more scientific information on the effects of sulfoxaflor on bees.

The researchers conducted field experiments for two years, and they also performed laboratory experiments with three predators: the convergent lady beetle (Hippodamia convergens), the insidious flower bug (Orius insidiosus), and a green lacewing known as Chrysoperla rufilabris.

They found that the abundance of predators in the genus Orius and the family Coccinellidae was two to four times greater on soybean plants treated with sulfoxaflor compared to plants treated with broad-spectrum insecticides. However, the abundance of predators in the family Chrysopidae did not differ on plants treated with either insecticide or ones that were left untreated.

The sulfoxaflor effects were considered moderately harmful to O. insidiosus, harmless to slightly harmful to H. convergens and harmless to C. rufilabris, according to ratings by the International Organization for Biological Control.
-end-
The full article, "Potential for Sulfoxaflor to Improve Conservation Biological Control of Aphis glycines (Hemiptera: Aphididae) in Soybean," is available at http://jee.oxfordjournals.org/content/early/2016/08/14/jee.tow168.

The Journal of Economic Entomology is published by the Entomological Society of America, the largest organization in the world serving the professional and scientific needs of entomologists and people in related disciplines. Founded in 1889, ESA today has more than 7,000 members affiliated with educational institutions, health agencies, private industry, and government. Members are researchers, teachers, extension service personnel, administrators, marketing representatives, research technicians, consultants, students, and hobbyists. For more information, visit http://www.entsoc.org.

Entomological Society of America

Related Predators Articles:

Fear of predators causes PTSD-like changes in brains of wild animals
A new study by Western University demonstrates that the fear predators inspire can leave long-lasting traces in the neural circuitry of wild animals and induce enduringly fearful behaviour, comparable to effects seen in PTSD research.
Fear of predators increases risk of illness
Predators are not only a deadly threat to many animals, they also affect potential prey negatively simply by being nearby.
New study questions effects of reintroducing top predators
There's little evidence that reintroducing top predators to ecosystems will return them to the conditions that existed before they were wiped out, according to new research.
'Seeing' tails help sea snakes avoid predators
New research has revealed the fascinating adaptation of some Australian sea snakes that helps protect their vulnerable paddle-shaped tails from predators.
How water fleas detect predators
Water fleas of the genus Daphnia detect via chemical substances if their predators, namely Chaoborus larvae, are hunting in their vicinity.
More Predators News and Predators Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Erasing The Stigma
Many of us either cope with mental illness or know someone who does. But we still have a hard time talking about it. This hour, TED speakers explore ways to push past — and even erase — the stigma. Guests include musician and comedian Jordan Raskopoulos, neuroscientist and psychiatrist Thomas Insel, psychiatrist Dixon Chibanda, anxiety and depression researcher Olivia Remes, and entrepreneur Sangu Delle.
Now Playing: Science for the People

#537 Science Journalism, Hold the Hype
Everyone's seen a piece of science getting over-exaggerated in the media. Most people would be quick to blame journalists and big media for getting in wrong. In many cases, you'd be right. But there's other sources of hype in science journalism. and one of them can be found in the humble, and little-known press release. We're talking with Chris Chambers about doing science about science journalism, and where the hype creeps in. Related links: The association between exaggeration in health related science news and academic press releases: retrospective observational study Claims of causality in health news: a randomised trial This...