Nav: Home

How are dreaded multidrug-resistant pathogens brought into hospitals?

August 17, 2016

According to National Reference Center for Surveillance of Nosocomial Infections esti-mates, up to 15,000 patients die of hospital-acquired infections in Germany every year. Here, multidrug-resistant bacteria, against which common antibiotics are no longer effec-tive, play a major role. But where do these pathogens come from? In largest study of its kind in Europe, DZIF scientists from the University of Cologne investigated this question and discovered that almost ten percent of patients admitted into hospitals already bring these dreaded pathogens along with them from home.

"We were surprised that on hospital admission almost every tenth patient is colonised with multidrug-resistant pathogens," explains Dr Axel Hamprecht from the University of Cologne. He coordinated this study, in which six German university hospitals participated, together with Prof Harald Seifert, also from the University of Cologne, and colleagues from Charité Berlin. Over 4,000 adults were tested for multidrug-resistant Enterobacteriaceae on admission into hospital by means of stool samples or rectal swabs.

Enterobacteriaceae such as Escherichia coli constitute a normal part of the gut flora and are not pathogenic--as long as they remain in the gut. However, they can cause infections in oth-er organs, for example urinary tract infections. An infection caused by multidrug-resistant bacteria is much more difficult to treat and requires the use of last-resort antibiotics. In their investigations, the researchers paid particular attention to a group of multidrug-resistant bacte-ria that are often problematic in hospitals: so-called third-generation cephalosporin-resistant Enterobacteriaceae (3GCREB).

These multidrug-resistant gut bacteria which are resistant to cephalosporins, amongst other drugs, have spread worldwide over the past years. Similar to penicillin, cephalosporins are antibiotics that kill bacteria by inhibiting bacterial cell wall synthesis. Newer third-generation cephalosporins are effective against a broad spectrum of bacteria and belong to the group of most commonly used antibiotics. However, over the course of time, the bacteria have defend-ed themselves and have acquired so-called beta-lactamase--an enzyme that renders these an-tibiotics ineffective. Enterobacteriaceae are transmitted by smear infection, predominantly via faeces and food.

Every tenth patient brings the pathogens into hospital

Out of the 4,376 adults who were tested for 3GCREB pathogens on admission to one of the participating hospitals, 416 were carriers of these multidrug-resistant pathogens. This preva-lence is higher than has previously been reported in Germany. Especially often, the scientists found beta-lactamase producing Escherichia coli bacteria, so-called ESBL-producing Entero-bacteriaceae. The prevalence of these multidrug-resistant pathogens differed from hospital to hospital.

In order to elucidate the factors for colonisation with these bacteria, the patients completed a questionnaire on previous hospital stays and lifestyle habits. "Patients who have taken antibi-otics and travellers outside Europe are at higher risk," says Hamprecht, underlining two im-portant research findings.

Experts recommend more hygiene and using fewer antibiotics

What can be done to prevent the spread of multidrug-resistant pathogens as early as possible? Hamprecht is certain, "With so many people affected, the strategy of isolating patients within the hospitals no longer works. Additionally, in contrast to other groups of multidrug-resistant bacteria such as MRSA (Methicillin-resistant Staphylococcus-aureus) strains, standardised sanitation measures for 3GCREB have not been established." Instead, Hamprecht and Seifert recommend improving hygiene measures in hospitals and practices, a rational use of antibiotics and especially reducing their non-justified administration, as well as more training for doctors.
-end-
The study was conducted as part of the antibiotic therapy optimisation study (ATHOS). Fur-ther participating centres are the Charité - Universitätsmedizin Berlin, as well as the Universi-ty Hospitals of Freiburg, Lübeck, Munich and Tübingen.

Publication

A Hamprecht, A M Rohde, M Behnke, S Feihl, P Gastmeier, F Gebhardt, W V Kern, J K Knobloch, A Mischnik, B Obermann, C Querbach, S Peter, C Schneider, W Schröder, F Schwab, E Tacconelli, M Wiese-Posselt, T Wille, M Willmann, H Seifert, J Zweigner; on be-half of the DZIF ATHOS Study Group

Colonization with third-generation cephalosporin-resistant Enterobacteriaceae on hospital admission: prevalence and risk factors.

J Antimicrob Chemother 2016 Jun 17. Epub 2016 Jun 17. Doi:10.1093/jac/dkw216

Contact

Dr Axel Hamprecht
University of Cologne
DZIF research field "Healthcare-associated and Antibiotic-resistant bacterial Infections"
T: +49 221 478 -32162/-32100
E-Mail: axel.hamprecht@uk-koeln.de

Prof Harald Seifert
University of Cologne
DZIF research field "Healthcare-associated and Antibiotic-resistant bacterial Infections"
T: +49 221 478-32009
E-Mail: harald.seifert@uni-koeln.de

German Center for Infection Research

Related Bacteria Articles:

How bacteria fertilize soya
Soya and clover have their very own fertiliser factories in their roots, where bacteria manufacture ammonium, which is crucial for plant growth.
Bacteria might help other bacteria to tolerate antibiotics better
A new paper by the Dynamical Systems Biology lab at UPF shows that the response by bacteria to antibiotics may depend on other species of bacteria they live with, in such a way that some bacteria may make others more tolerant to antibiotics.
Two-faced bacteria
The gut microbiome, which is a collection of numerous beneficial bacteria species, is key to our overall well-being and good health.
Microcensus in bacteria
Bacillus subtilis can determine proportions of different groups within a mixed population.
Right beneath the skin we all have the same bacteria
In the dermis skin layer, the same bacteria are found across age and gender.
Bacteria must be 'stressed out' to divide
Bacterial cell division is controlled by both enzymatic activity and mechanical forces, which work together to control its timing and location, a new study from EPFL finds.
How bees live with bacteria
More than 90 percent of all bee species are not organized in colonies, but fight their way through life alone.
The bacteria building your baby
Australian researchers have laid to rest a longstanding controversy: is the womb sterile?
Hopping bacteria
Scientists have long known that key models of bacterial movement in real-world conditions are flawed.
Bacteria uses viral weapon against other bacteria
Bacterial cells use both a virus -- traditionally thought to be an enemy -- and a prehistoric viral protein to kill other bacteria that competes with it for food according to an international team of researchers who believe this has potential implications for future infectious disease treatment.
More Bacteria News and Bacteria Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Processing The Pandemic
Between the pandemic and America's reckoning with racism and police brutality, many of us are anxious, angry, and depressed. This hour, TED Fellow and writer Laurel Braitman helps us process it all.
Now Playing: Science for the People

#568 Poker Face Psychology
Anyone who's seen pop culture depictions of poker might think statistics and math is the only way to get ahead. But no, there's psychology too. Author Maria Konnikova took her Ph.D. in psychology to the poker table, and turned out to be good. So good, she went pro in poker, and learned all about her own biases on the way. We're talking about her new book "The Biggest Bluff: How I Learned to Pay Attention, Master Myself, and Win".
Now Playing: Radiolab

Invisible Allies
As scientists have been scrambling to find new and better ways to treat covid-19, they've come across some unexpected allies. Invisible and primordial, these protectors have been with us all along. And they just might help us to better weather this viral storm. To kick things off, we travel through time from a homeless shelter to a military hospital, pondering the pandemic-fighting power of the sun. And then, we dive deep into the periodic table to look at how a simple element might actually be a microbe's biggest foe. This episode was reported by Simon Adler and Molly Webster, and produced by Annie McEwen and Pat Walters. Support Radiolab today at Radiolab.org/donate.