Nav: Home

Experts from Saxony assist raw material exploration in Greenland

August 17, 2016

The technical expertise of the Helmholtz Institute Freiberg for Resource Technology (HIF) has been requested to support mineral exploration of zinc deposits in West Greenland. The scientists of the HIF, part of the Helmholtz-Zentrum Dresden-Rossendorf (HZDR), are combining the use of drones alongside various other more traditional exploration methods. The aim of this project is to produce high-resolution geological maps of two remote areas of approximately 15 km2 each.

From the 9th August, HIF engineer Robert Zimmermann has swapped his office at the HIF for a cabin on a ship off the coast of West Greenland. He is part of a small international team lead by the Geological Survey of Denmark and Greenland (GEUS) and the Greenlandic Ministry for Mineral Resources that aims to acquire a more detailed insight into raw material potential in Greenland. For his share of the work, Zimmermann has various types of measuring systems on board, some of which are operated using drones.

The area where the drones are being used is the Karrat region in West Greenland where large deposits of zinc are known to exist. The overall raw material potential in this area is already known as zinc has already been mined in the Maarmorilik area, in the southern part of the Karrat region. In order to better estimate the volume of the zinc resources and to pinpoint their exact location, the geological research institution GEUS is calling upon the know-how of German experts for assistance.

Robert Zimmermann is responsible for hyperspectral instruments and drones as well as data collection for the exploration technology division of the HZDR, lead by Dr. Richard Gloaguen. Dr. Gloaguen, a French research scientist, presented the division's work to the European raw material network - EIT Raw Materials - at a conference in Copenhagen. This presentation caught the attention of GEUS as Dr. Gloaguen's team is one of the few which combines various measuring techniques with unmanned aerial vehicles, more commonly known as drones in Europe.

Non-Invasive Exploration

The researchers are able to combine geological data collected from multiple innovative sensors at different scales in a comprehensive model in order to estimate the potential of raw material deposits without even having to penetrate the Earth's surface. Non-invasive exploration, "that is our strength," said Richard Gloaguen. His team travels the globe and was recently in Namibia and Spain. They are currently contributing with their technical expertise to the exploration work in Greenland.

From their base station on the ship, Robert Zimmermann and the other expedition participants are either flown by helicopter or transported by boat to the exploration areas. "We start at the edge and work inwards," said Zimmermann. "Many deposits are surrounded by alteration or transformation zones. These zones are dominated by the presence of alteration minerals, usually diverse silicon or sulfur compounds. By firstly identifying these minerals in the vicinity of the deposits, we can then draw inferences about the possible zinc content."

Zimmerman explained that the researchers use two hyperspectral cameras, an x-ray fluorescence spectrometer and a reflectance spectrometer to measure the spectral properties of the minerals contained in the outcropping rocks. "Each type of rock shows characteristic images when exposed to sunlight or x-rays," he said. "From the data collected we can produce a consistent image of the distribution of the alteration minerals in the rock massif. Combined with our geological knowledge this allows us to infer which areas are rich in a particular mineral, in this case zinc".

Less Samples and Lower Costs

"In the end, this type of geological exploration requires fewer samples, and consequently, requires less laboratory work and reduces costs," said division head Richard Gloaguen. "In addition, these methods allow information to be collected from exploration areas that would otherwise be difficult to reach. It is then up to GEUS to pass on this information to potential investors. However, the exploration technology that we have developed may also be of interest to industry." The Helmholtz experts also want to use the Greenland expedition to further develop their own research approach. Once the data has been collected on-site in Greenland, it will be analyzed in September with the help of a GEUS researcher at the Helmholtz Institute Freiberg.

GEUS assumes that there are various rich deposits of raw materials in Greenland. The Karrat area in West Greenland is one of the most well-known zinc deposits on the island. Today, zinc ores are mainly mined in the People's Republic of China, Australia, Peru, India, the United States, Mexico and Canada. The metal is used mostly for corrosion protection of steel and iron components, but also in batteries and in the construction industry.
For more information:

Dr. Richard Gloaguen
Helmholtz Institute Freiberg for Resource Technology at HZDR T
el.: +49 351 260 - 4424 | E-Mail:

Dr. Diogo Rosa
The Geological Survey of Denmark and Greenland (GEUS) | Petrology and Economic Geology
Project head „Northern Zinc"
Tel.: +45 9133 - 3859 | E-Mail:

Media contact:

Anja Weigl | Press officer
Tel.: +49 351 260 - 4427| E-Mail:
Helmholtz Institute Freiberg for Resource Technology | Chemnitzer Straße 40 | 09599 Freiberg |

The Helmholtz-Zentrum Dresden-Rossendorf (HZDR) conducts research in the sectors energy, health, and matter. The HZDR has been a member of the Helmholtz Association, Germany's largest research organization, since 2011. It has four locations (Dresden, Leipzig, Freiberg, Grenoble) and employs about 1,100 people - approximately 500 of whom are scientists, including 150 doctoral candidates.

The aim of the Helmholtz Institute Freiberg for Resource Technology (HIF) is to develop innovative scientific technologies for the commercial sector in order to process and utilize mineral and metalliferous raw materials more efficiently and to recycle such materials in an environmentally friendly manner. The HIF was founded in 2011 and is part of the Helmholtz-Zentrum Dresden-Rossendorf. The institute cooperates closely with the TU Bergakademie Freiberg.

Helmholtz-Zentrum Dresden-Rossendorf

Related Zinc Articles:

Tackling iron and zinc deficiencies with 'better' bread
The health effects of zinc and iron deficiencies can be devastating, particularly in developing countries.
Zinc's negative effects on mineral digestibility can be mitigated, study shows
Researchers at the University of Illinois have shown that a common strategy for reducing postweaning digestive problems in pigs may have negative effects on calcium and phosphorus digestibility, and are suggesting management practices to counteract the effects.
Zinc may hold key to fighting liver disease
New research from Sydney's Westmead Institute for Medical Research highlights the potential for zinc to be used as a simple and effective therapeutic against viral infections such as hepatitis C and influenza.
Zinc oxide: It's not just for sunscreen and diaper cream!
For many, zinc oxide conjures images of bright stripes down lifeguards' noses.
Common cold duration is shortened similarly by zinc acetate and zinc gluconate lozenges
There is no significant difference between zinc acetate lozenges and zinc gluconate lozenges regarding their efficacy in shortening the duration of common colds according to a meta-analysis published in Journal of the Royal Society of Medicine Open.
More Zinc News and Zinc Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Teaching For Better Humans
More than test scores or good grades — what do kids need to prepare them for the future? This hour, guest host Manoush Zomorodi and TED speakers explore how to help children grow into better humans, in and out of the classroom. Guests include educators Olympia Della Flora and Liz Kleinrock, psychologist Thomas Curran, and writer Jacqueline Woodson.
Now Playing: Science for the People

#535 Superior
Apologies for the delay getting this week's episode out! A technical glitch slowed us down, but all is once again well. This week, we look at the often troubling intertwining of science and race: its long history, its ability to persist even during periods of disrepute, and the current forms it takes as it resurfaces, leveraging the internet and nationalism to buoy itself. We speak with Angela Saini, independent journalist and author of the new book "Superior: The Return of Race Science", about where race science went and how it's coming back.