Nav: Home

Designer agent blocks pain in mice without morphine's side effects

August 17, 2016

Scientists have synthesized a molecule with a unique profile of highly specific pain-relieving properties and demonstrated its efficacy in mice. Compared to existing opioid pain relievers, like morphine, the new agent, called PZM21, was not "reinforcing" or prone to triggering potentially lethal respiratory impairment - and was also less constipating. Also unlike existing analgesics, it had little effect on spinal cord reflexive responses, instead targeting the brain-mediated emotional/experiential component of pain. In addition to clinical potential, PZM21 also holds promise as a "tool molecule" for exploring the workings of brain pain systems, say the researchers.

The study represents the combined efforts of NIH-funded research teams led by Nobel laureate Brian Kobilka, M.D., of Stanford University, Bryan Roth, M.D., Ph.D., of the University of North Carolina, and Brian Shoichet, Ph.D., of the University of California San Francisco. They report on their findings August 17, 2016 in the journal Nature.

They achieved PZM21's specificity by applying knowledge of opioid receptor structure to design an agent optimized for just the desired properties. Evidence suggested that the undesirable side effects of morphine-like opiates work on the receptor through a molecular signaling pathway linked to beta-arrestin, while the desired analgesic effects work through a G protein-coupled receptor pathway. The researchers screened and ranked more than 3 million compounds for these properties - evaluating each in about 1.3 million configurations for their ability to tweak the opioid receptor in the desired ways. After exhaustive winnowing, they used the knowledge gained to synthesize the strongest G protein and weakest beta-arrestin activator. PZM21's unprecedented chemical structure then performed just as they had theorized in mouse tests of analgesic and side effect potential.

"This work demonstrates the power of structure-based design to speed up the development of drugs with optimal signaling and therapeutic properties" explained Laurie Nadler, Ph.D., chief of the Neuropharmacology Program of the NIH's National Institute of Mental Health, which co-funded the research along with NIH's National Institute of General Medical Sciences and National Institute on Drug Abuse.
-end-
ARTICLE: Manglik A, Lin H, Aryal DK, McCorvy JD, Dengler D, Corder G Levit A, Kling RC, Bernat V, Hubner H, Huang X-P, Sassano MF, Giguere PM, Lober S, Duan D, Scherrer G, Kobilka BK, Gmeiner P, Roth BL, Shoichet BK. Structure-based discovery of opioid analgesics with reduced side effects. Nature, Aug. 17, 2016. DOI: 10.1038/nature19112.

About the National Institute of Mental Health (NIMH): The mission of the (NIMH) is to transform the understanding and treatment of mental illnesses through basic and clinical research, paving the way for prevention, recovery and cure. For more information, visit the NIMH website http://www.nimh.nih.gov.

About the National Institute on Drug Abuse (NIDA): The National Institute on Drug Abuse (NIDA) is a component of the National Institutes of Health, U.S. Department of Health and Human Services. NIDA supports most of the world's research on the health aspects of drug use and addiction. The Institute carries out a large variety of programs to inform policy, improve practice, and advance addiction science. Fact sheets on the health effects of drugs and information on NIDA research and other activities can be found at http://www.drugabuse.gov.

NIGMS is a part of NIH that supports basic research to increase our understanding of life processes and lay the foundation for advances in disease diagnosis, treatment and prevention. For more information on the Institute's research and training programs, see http://www.nigms.nih.gov.

About the National Institutes of Health (NIH): NIH, the nation's medical research agency, includes 27 Institutes and Centers and is a component of the U.S. Department of Health and Human Services. NIH is the primary federal agency conducting and supporting basic, clinical, and translational medical research, and is investigating the causes, treatments, and cures for both common and rare diseases. For more information about NIH and its programs, visit the http://www.nih.gov.

NIH/National Institute of Mental Health

Related Brain Articles:

Study describes changes to structural brain networks after radiotherapy for brain tumors
Researchers compared the thickness of brain cortex in patients with brain tumors before and after radiation therapy was applied and found significant dose-dependent changes in the structural properties of cortical neural networks, at both the local and global level.
Blue Brain team discovers a multi-dimensional universe in brain networks
Using a sophisticated type of mathematics in a way that it has never been used before in neuroscience, a team from the Blue Brain Project has uncovered a universe of multi-dimensional geometrical structures and spaces within the networks of the brain.
New brain mapping tool produces higher resolution data during brain surgery
Researchers have developed a new device to map the brain during surgery and distinguish between healthy and diseased tissues.
Newborn baby brain scans will help scientists track brain development
Scientists have today published ground-breaking scans of newborn babies' brains which researchers from all over the world can download and use to study how the human brain develops.
New test may quickly identify mild traumatic brain injury with underlying brain damage
A new test using peripheral vision reaction time could lead to earlier diagnosis and more effective treatment of mild traumatic brain injury, often referred to as a concussion.
More Brain News and Brain Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Teaching For Better Humans
More than test scores or good grades — what do kids need to prepare them for the future? This hour, guest host Manoush Zomorodi and TED speakers explore how to help children grow into better humans, in and out of the classroom. Guests include educators Olympia Della Flora and Liz Kleinrock, psychologist Thomas Curran, and writer Jacqueline Woodson.
Now Playing: Science for the People

#534 Bacteria are Coming for Your OJ
What makes breakfast, breakfast? Well, according to every movie and TV show we've ever seen, a big glass of orange juice is basically required. But our morning grapefruit might be in danger. Why? Citrus greening, a bacteria carried by a bug, has infected 90% of the citrus groves in Florida. It's coming for your OJ. We'll talk with University of Maryland plant virologist Anne Simon about ways to stop the citrus killer, and with science writer and journalist Maryn McKenna about why throwing antibiotics at the problem is probably not the solution. Related links: A Review of the Citrus Greening...