Nav: Home

Unexpected complexity in coral

August 17, 2016

Coral reefs are delicate ecosystems, which are endangered by climate change and human activities. The restoration of these underwater environments is typically carried out by transplanting corals from healthy reefs to compromised ones. This practice can be problematic, as it overlooks the local characteristics of each reef, and may reduce genetic diversity.

The first step towards an ecologically mindful restoration is the detailed understanding of the population structure and genetic variation of each reef. Yuna Zayasu and Chuya Shinzato, from the Marine Genomics Unit of the Okinawa Institute of Science and Technology Graduate University (OIST), investigated 298 colonies from 15 locations across the Nansei Archipelago, in Japan. They compared the DNA of one of the most widespread coral, scientifically known as Acropora tenuis, to gain a deeper comprehension of its genetic diversity. Their project was a collaboration between several institutions: the Japanese Fisheries Research Agency, the University of the Ryukyus, OIST Marine Biophysics Unit and the OIST Marine Genomics Unit. Their results are published in Ecology and Evolution.

"We wanted to check the genetic correlation between different colonies," Zayasu explained. The researchers used a technique similar to the one commonly employed for paternity test, comparing 13 DNA portions for each different sample of the coral. Such portions are called 'microsatellites'. "The results show that there are at least two different populations of A. tenuis in the Nansei, despite the fact that there is no geographic boundary between these populations."

The finding is particularly interesting, because it questions the previous assumption that A. tenuis has the ability to easily disperse throughout the Nansei islands. This assumption was based on the importance attributed to the main marine current in the Nansei - the Kuroshio Current - in the life cycle of the coral. Specifically, on the influence that the Kuroshio could have while the coral is in its larva form, swimming to select a settlement site.

Zayasu and colleagues are suggesting that there are other factors that are key to explain the complex population structure. Specifically, a local current - ignored in coral studies to date - that flows in the opposite direction of the Kuroshio. This new hypothesis is supported by the fact that the Kuroshio Current flows from south to north, while one of the A. tenuis population shows signs of north to south expansion. The south of Okinawa Island is the potential contact point of the two populations.

"While we have clearly detected two populations, it is possible that there are more," Zayasu said. "Whole genome analysis - that allows full access to the DNA of an organism - could in the future reveal more detailed population relationship, possibly even highlighting historical events such as local extinction and recovery."

The uniqueness of the coral reef that this study presents is noteworthy, because if each reef is a distinctive environment for unique varieties of corals, reef restoration should aim to protect the specific characteristics of each local habitat and population.

Okinawa Institute of Science and Technology (OIST) Graduate University

Related Dna Articles:

Zigzag DNA
How the cell organizes DNA into tightly packed chromosomes. Nature publication by Delft University of Technology and EMBL Heidelberg.
Scientists now know what DNA's chaperone looks like
Researchers have discovered the structure of the FACT protein -- a mysterious protein central to the functioning of DNA.
DNA is like everything else: it's not what you have, but how you use it
A new paradigm for reading out genetic information in DNA is described by Dr.
A new spin on DNA
For decades, researchers have chased ways to study biological machines.
From face to DNA: New method aims to improve match between DNA sample and face database
Predicting what someone's face looks like based on a DNA sample remains a hard nut to crack for science.
Self-healing DNA nanostructures
DNA assembled into nanostructures such as tubes and origami-inspired shapes could someday find applications ranging from DNA computers to nanomedicine.
DNA design that anyone can do
Researchers at MIT and Arizona State University have designed a computer program that allows users to translate any free-form drawing into a two-dimensional, nanoscale structure made of DNA.
DNA find
A Queensland University of Technology-led collaboration with University of Adelaide reveals that Australia's pint-sized banded hare-wallaby is the closest living relative of the giant short-faced kangaroos which roamed the continent for millions of years, but died out about 40,000 years ago.
DNA structure impacts rate and accuracy of DNA synthesis
DNA sequences with the potential to form unusual conformations, which are frequently associated with cancer and neurological diseases, can in fact slow down or speed up the DNA synthesis process and cause more or fewer sequencing errors.
Changes in mitochondrial DNA control how nuclear DNA mutations are expressed in cardiomyopathy
Differences in the DNA within the mitochondria, the energy-producing structures within cells, can determine the severity and progression of heart disease caused by a nuclear DNA mutation.
More DNA News and DNA Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Clint Smith
The killing of George Floyd by a police officer has sparked massive protests nationwide. This hour, writer and scholar Clint Smith reflects on this moment, through conversation, letters, and poetry.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Dispatch 6: Strange Times
Covid has disrupted the most basic routines of our days and nights. But in the middle of a conversation about how to fight the virus, we find a place impervious to the stalled plans and frenetic demands of the outside world. It's a very different kind of front line, where urgent work means moving slow, and time is marked out in tiny pre-planned steps. Then, on a walk through the woods, we consider how the tempo of our lives affects our minds and discover how the beats of biology shape our bodies. This episode was produced with help from Molly Webster and Tracie Hunte. Support Radiolab today at