Nav: Home

Thin tropical clouds cool the climate

August 17, 2016

Thin clouds at about 5 km altitude are more ubiquitous in the tropics than previously thought and they have a substantial cooling effect on climate. This is shown in a recent study by researchers from Stockholm University and the University of Miami published in Nature Communications. The cooling effect of mid-level clouds is currently missing in global climate models.

"Using the satellite observations and high-resolution numerical modelling, we find that thin mid-level clouds are frequently formed in the tropics in the vicinity of deep convective clouds and that their cooling effect could be as large as the warming induced by high cirrus clouds", says lead author of the study Quentin Bourgeois, postdoctoral associate at the Department of Meteorology (MISU) and the Bolin Centre for Climate Research, Stockholm University.

Clouds play a pivotal role in determining the Earth's climate and radiation budget, yet we still have a lot to learn about them. In particular, little is known about mid-level clouds, i.e. clouds located at approximately 5 km altitude, as these clouds are challenging to study.

"To bridge our gaps in knowledge about thin mid-level clouds we used space-borne lidar instruments that provide detailed information on the vertical distribution of clouds", says Quentin Bourgeois.

The scientists anticipate that their study will trigger further interest in thin mid-level clouds, which have been neglected for too long. In particular, the mechanism of their formation is not well understood yet. The authors also hope that the climate research community will factor in clouds in climate models more often in the future so that projections of climate change will become more accurate.

Clouds effects on global climate


Clouds cover about 70% of the Earth's surface at any time. Different types of clouds affect the Earth's climate differently: low liquid clouds, such as the cotton-like cumulus, cool the Earth while high altitude ice clouds, such as the wispy cirrus, warm the climate. Overall, clouds cool the climate by about 20 W m-2. In contrast, the Earth receives on average about 340 W m-2 energy from the sun every day and our current emissions of anthropogenic greenhouse gases warm the climate by about 3 W m-2.
-end-
For more information

Quentin Bourgeois, Department of Meteorology (MISU) and the Bolin Centre for Climate Research, Stockholm University, email: quentin.bourgeois@misu.su.se, phone +46(0)8-16 42 36, cell phone +46 (0)707 40 57 12

Annica Ekman, Department of Meteorology (MISU) Stockholm University, email: annica@misu.su.se, phone/cellphone +46(0)8-16 23 97

Matthew Igel, University of Miami, email: migel@rsmas.miami.edu, phone +1 828 493 05 07

Radovan Krejci, Department of Environmental Science and Analytical Chemistry, Stockholm University, email: radovan.krejci@aces.su.se, phone +46(0)8-674 72 24 This work is supported by the Swedish National Space Board (Rymdstyrelsen). M. Igel is supported by the National Science Foundation under Award No. 1433164. We thank T. Corti and T. Peter for their help with the cloud radiative forcing model. We acknowledge the ICARE Data Services and Center for providing access to the CALIOP data used in this study and tools to process them.

Stockholm University

Related Climate Change Articles:

Fairy-wrens change breeding habits to cope with climate change
Warmer temperatures linked to climate change are having a big impact on the breeding habits of one of Australia's most recognisable bird species, according to researchers at The Australian National University (ANU).
Believing in climate change doesn't mean you are preparing for climate change, study finds
Notre Dame researchers found that although coastal homeowners may perceive a worsening of climate change-related hazards, these attitudes are largely unrelated to a homeowner's expectations of actual home damage.
Older forests resist change -- climate change, that is
Older forests in eastern North America are less vulnerable to climate change than younger forests, particularly for carbon storage, timber production, and biodiversity, new research finds.
Could climate change cause infertility?
A number of plant and animal species could find it increasingly difficult to reproduce if climate change worsens and global temperatures become more extreme -- a stark warning highlighted by new scientific research.
Predicting climate change
Thomas Crowther, ETH Zurich identifies long-disappeared forests available for restoration across the world.
Historical climate important for soil responses to future climate change
Researchers at Lund University in Sweden, in collaboration with colleagues from the University of Amsterdam, examined how 18 years of drought affect the billions of vital bacteria that are hidden in the soil beneath our feet.
Can forests save us from climate change?
Additional climate benefits through sustainable forest management will be modest and local rather than global.
From crystals to climate: 'Gold standard' timeline links flood basalts to climate change
Princeton geologists used tiny zircon crystals found in volcanic ash to rewrite the timeline for the eruptions of the Columbia River flood basalts, a series of massive lava flows that coincided with an ancient global warming period 16 million years ago.
Think pink for a better view of climate change
A new study says pink noise may be the key to separating out natural climate variability from climate change that is influenced by human activity.
Climate taxes on agriculture could lead to more food insecurity than climate change itself
New IIASA-led research has found that a single climate mitigation scheme applied to all sectors, such as a global carbon tax, could have a serious impact on agriculture and result in far more widespread hunger and food insecurity than the direct impacts of climate change.
More Climate Change News and Climate Change Current Events

Top Science Podcasts

We have hand picked the top science podcasts of 2019.
Now Playing: TED Radio Hour

Risk
Why do we revere risk-takers, even when their actions terrify us? Why are some better at taking risks than others? This hour, TED speakers explore the alluring, dangerous, and calculated sides of risk. Guests include professional rock climber Alex Honnold, economist Mariana Mazzucato, psychology researcher Kashfia Rahman, structural engineer and bridge designer Ian Firth, and risk intelligence expert Dylan Evans.
Now Playing: Science for the People

#540 Specialize? Or Generalize?
Ever been called a "jack of all trades, master of none"? The world loves to elevate specialists, people who drill deep into a single topic. Those people are great. But there's a place for generalists too, argues David Epstein. Jacks of all trades are often more successful than specialists. And he's got science to back it up. We talk with Epstein about his latest book, "Range: Why Generalists Triumph in a Specialized World".
Now Playing: Radiolab

Dolly Parton's America: Neon Moss
Today on Radiolab, we're bringing you the fourth episode of Jad's special series, Dolly Parton's America. In this episode, Jad goes back up the mountain to visit Dolly's actual Tennessee mountain home, where she tells stories about her first trips out of the holler. Back on the mountaintop, standing under the rain by the Little Pigeon River, the trip triggers memories of Jad's first visit to his father's childhood home, and opens the gateway to dizzying stories of music and migration. Support Radiolab today at Radiolab.org/donate.