Nav: Home

Compound kills pain as well as morphine but may lack overdose risk, researchers say

August 17, 2016

Investigators at the Stanford University School of Medicine and their collaborators at three other institutions have identified a novel compound that appears to exhibit painkilling power comparable to morphine but lacks that drug's most lethal property: respiratory suppression, which results in some 30,000 drug overdose deaths annually in the United States.

"This promising drug candidate was identified through an intensively cross-disciplinary, cross-continental combination of computer-based drug screening, medicinal chemistry, intuition and extensive preclinical testing," said Brian Kobilka, MD, professor of molecular and cellular physiology, and one of the senior investigators involved in the research.

Scientists at the University of California-San Francisco, the University of North Carolina and the Friedrich Alexander University in Erlangen, Germany, were also pivotal to the work, described in a study to be published Aug. 17 in Nature.

Kobilka credited Aashish Manglik, MD, PhD, a recent graduate of Stanford's Medical Scientist Training Program, as driving the study from the Stanford side. Manglik is one of the study's three co-lead authors.

The new compound's potential is enhanced by promising early signs, in mouse studies, that it may be less addictive than morphine and related drugs. While this reduced addiction potential remains to be demonstrated definitively in other animal studies, it's strongly suggested by, among other things, the experimental mice's indifferent attitude toward solutions containing the compound compared with otherwise identical solutions lacking it.

A drug with these characteristics would come as good news to physicians, patients and public-health authorities deeply concerned about a growing epidemic of addictive-painkiller abuse.

"Opium and its derivatives are perhaps the oldest drugs in the pharmaceutical formulary," said Manglik, who is now the School of Medicine's first-ever Stanford Distinguished Fellow, which enables him to have his own laboratory and independent funding. "There's some evidence that their use predates written history."

The hunt for a safer painkiller

A natural extract of the opium poppy, morphine was, in the 19th century, the first natural substance purified to homogeneity for medical use, Manglik said.

But respiratory suppression remains a general drawback of opioids, which in addition to morphine include the prescription painkillers codeine, oxycodone, oxycontin, hydrocodone and fentanyl as well as illicit drugs such as heroin. Designing a safer molecule required close collaboration between Stanford and scientists at three other institutions.

The new compound's identification made use of the three-dimensional structure of the mu opioid receptor determined by Manglik and colleagues in the Kobilka lab in 2012. The receptor, via which morphinelike drugs exert the bulk of their potent painkilling effect, is a member of a family of structurally similar cell-surface proteins found throughout the brain and spinal cord. When bound by morphine or one of its many natural or synthetic analogs, these receptors initiate signaling processes that alter the activities of other proteins inside the cells on which they sit.

Earlier work by other researchers established that morphine-resembling drugs' analgesic effect is brought about by a particular cascade of downstream chemical reactions (also known as a molecular pathway) set in motion when these drugs bind to the mu opioid receptor, while their respiration-suppressing effect is induced by another molecular pathway tripped off by the same binding event.

Safely reproducing morphine's benefits meant finding a way to separate those two effects. The trick was to activate the mu opioid receptor but not any of the other opioid receptors -- and, having done so, to stimulate only the molecular pathway responsible for inducing analgesia and not the pathway responsible for respiratory suppression.

"The field had wondered whether a small molecule with just the right chemical features to trip off one pathway, but not the other, could be designed," said Manglik. Determining the mu opioid receptor's structure enabled detailed analysis of the receptor's binding pocket, into which opioids fit like a hand in a glove. This, in turn, propelled an interdisciplinary collaboration with scientists at UCSF, UNC and FAU.

Using a 'virtual medicine cabinet'

Manglik and Kobilka enlisted Henry Lin, PhD, then a graduate student in the lab of UCSF pharmaceutical chemistry professor Brian Shoichet, PhD. (Lin is a co-lead author and Shoichet is a co-senior author of the study.) After computationally screening about 3 million commercially available or easily synthesized compounds in a "virtual medicinal-compound cabinet" created by Shoichet's group, Manglik and Lin focused on 2,500 compounds that, computer simulations suggested, may bind to the mu opioid receptor. From those, they culled a few dozen that looked like especially good candidates for further inspection.

Lin and Shoichet focused on chemical structures that differed substantially from those of existing opioids, reasoning that they might bind to the receptor in ways that would stimulate beneficial but not detrimental downstream molecular pathways.

After testing 23 of these compounds and narrowing the field to seven, Lin and Manglik returned to the Shoichet group's online database, searched for similar compounds worth testing and found another dozen or so.

A dose of intuition

These compounds were sent to the laboratory of Bryan Roth, MD, PhD, a professor of pharmacology and of medicinal chemistry at UNC, who analyzed them further and found that one strongly activated the "good" downstream molecular pathway without significantly recruiting the "bad" pathway. Though promising, the compound was not sufficiently potent to work as a therapeutic. To optimize its properties, the group enlisted the help of Peter Gmeiner, PhD, chair and professor of medicinal chemistry at FAU. Gmeiner's group created numerous versions of the compound, and identified one that bound the mu opioid better than its predecessor.

An intuitive insight on Manglik's part led to a final tweak: the addition, in Gmeiner's lab, of a chemical feature called a hydroxyl group that would stabilize the molecule's "fit" inside the receptor's binding pocket. The resulting molecule, which the investigators named PZM21, had a mu opioid-binding strength about 1,000 times that of the compound in the original database from which it was derived.

Still more tests in the Roth lab showed that PZM21 not only didn't cause any significant activity in other opioid receptors but actually prevented activity in one of them, the kappa receptor, whose activation is associated with uneasiness and, sometimes, hallucinations. Both morphine and another opioid drug now in phase-3 clinical trials, oliceridine, trigger mild activity at the kappa receptor.

Experiments in mice by co-lead author Dipendra Aryal, PhD, a research associate in the Roth lab, bore out predictions of PZM21's analgesic efficacy -- it was as powerful as morphine -- and its benign character with respect to the suppression of breathing, compared with morphine. Given a choice between two chambers, one paired to an injection of a solution containing PZM21 and the other to an otherwise identical solution that lacked PZM21, the mice showed no preference for either chamber. By comparison, if one of the chambers is paired with morphine, mice are known to spend substantially more time in the morphine-paired chamber.

Other experiments performed in the Stanford laboratory of Gregory Scherrer, PhD, assistant professor of anesthesiology, perioperative and pain medicine and of neurosurgery, showed that PZM21 had no effect on mice bioengineered to lack the mu opioid receptor, confirming the compound's mechanism of action.
Kobilka, Shoichet, Gmeiner and Roth share senior authorship of the study. A biotechnology company, Epiodyne, that they and Manglik have formed is negotiating PZM21's licensing from the four academic institutions for further development.

Another Stanford co-author is postdoctoral scholar Gregory Corder, PhD.

The study was funded by the National Institutes of Health (grants U19GM106990, R37DA036246, GM059957, R01DA017204 and R01DA035764), the Stanford University Medical Scientist Training Program, the American Heart Association and the German Research Foundation.

Stanford's Department of Molecular and Cellular Physiology also supported the work.

The Stanford University School of Medicine consistently ranks among the nation's top medical schools, integrating research, medical education, patient care and community service. For more news about the school, please visit The medical school is part of Stanford Medicine, which includes Stanford Health Care and Stanford Children's Health. For information about all three, please visit

Stanford University Medical Center

Related Morphine Articles:

Virtual reality illuminates the power of opioid-associated memories
The brain acts differently when remembering environments associated with drug use.
Intranasal sufentanil as good as IV morphine for emergency pain relief, study finds
In patients presenting to an emergency department with severe traumatic pain, intranasal sufentanil was as good as standard-of-care intravenous morphine for pain relief, according to a new study published this week in PLOS Medicine by Marc Blancher of Grenoble Alpes University Hospital, France, and colleagues.
New opioid speeds up recovery without increasing pain sensitivity or risk of chronic pain
A new type of non-addictive opioid developed by researchers at Tulane University and the Southeast Louisiana Veterans Health Care System accelerates recovery time from pain compared to morphine without increasing pain sensitivity, according to a new study published in the Journal of Neuroinflammation.
New painkiller lasts longer, is less addictive than morphine
As an alternative to morphine, researchers present a new nano-painkiller they've tested in rodents.
How the poppy evolved its pain-relieving properties
The unveiling of the poppy genome reveals how a collection of genes fused to endow the plant with its pain-relieving compounds; the plant underwent a notable genome duplication event about 7.8 million years ago, the study's authors say.
A wakefulness molecule is abundant in the brains of heroin addicts
Researchers have discovered that the brains of heroin addicts harbor a greater number of neurons that produce hypocretin, a molecule involved in arousal and wakefulness, and one lacking in abundance in people with narcolepsy.
Change in brain cells linked to opiate addiction, narcolepsy
Two discoveries -- one in the brains of people with heroin addiction and the other in the brains of sleepy mice -- shed light on chemical messengers in the brain that regulate sleep and addiction.
Potential new treatment for drug addiction relapse revealed
Research published in Addiction Biology by scientists at the University of Bath reveals a new potential mechanism for combatting drug addiction relapse.
Body's 'natural opioids' affect brain cells much differently than morphine
A new study led by UC San Francisco scientists shows that brain cells, or neurons, react differently to opioid substances created inside the body -- the endorphins responsible for the 'natural high' that can be produced by exercise, for example -- than they do to morphine and heroin, or to purely synthetic opioid drugs, such as fentanyl.
Study suggests failed osteoarthritis drug could help treat opioid addiction
A study from Indiana University suggests that a drug proven safe for use in people may prevent opioid tolerance and physical dependence when used with opioid-based pain medications.
More Morphine News and Morphine Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: Reinvention
Change is hard, but it's also an opportunity to discover and reimagine what you thought you knew. From our economy, to music, to even ourselves–this hour TED speakers explore the power of reinvention. Guests include OK Go lead singer Damian Kulash Jr., former college gymnastics coach Valorie Kondos Field, Stockton Mayor Michael Tubbs, and entrepreneur Nick Hanauer.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Dispatch 6: Strange Times
Covid has disrupted the most basic routines of our days and nights. But in the middle of a conversation about how to fight the virus, we find a place impervious to the stalled plans and frenetic demands of the outside world. It's a very different kind of front line, where urgent work means moving slow, and time is marked out in tiny pre-planned steps. Then, on a walk through the woods, we consider how the tempo of our lives affects our minds and discover how the beats of biology shape our bodies. This episode was produced with help from Molly Webster and Tracie Hunte. Support Radiolab today at