How the genome sets its functional micro-architecture

August 17, 2017

The genes that are involved in the development of the fetus are activated in different tissues and at different times. Their expression is carefully regulated by so-called "enhancer sequences", which are often located far from their target genes, and requires the DNA molecule to loop around and bring them in close proximity to their target genes. Such 3D changes of the DNA are in turn controlled by other sequences called topologically associating domains (TADs). EPFL scientists have now studied the TADs involved in digit development in the fetus and have gained insights in some of the big questions surrounding them. The work is published in Genome Biology.

Boundaries and tape

TADs are portion of the DNA molecule that divides the entire genome of an organism into manageable chunks, like districts in a city. Inside the cell, the vast amount of DNA is packaged into chromatin and chromatin is packaged into the familiar chromosomes. Inside every TAD there exist genes as well as the elements that regulate them, all packaged together and insulated from genes and regulators in neighboring TADs, like channels or walls that separate city districts. Breaking down the boundaries set by TADs leads to a number of disorders such as colon, esophagus, brain, and blood cancers.

But despite their importance, we know little about these boundaries, which confer to a TAD its structure. This raises the question: Is the information coming from the inner parts of a TAD or due to boundaries. The latter are DNA sequences that are often associated with the proteins cohesin and CTCF, which stick to the TAD extremities like tape, seemingly helping them divide and loop DNA around. CTCF, found at the boundaries of TAD domains, has been of special interest, recently, as it was shown to insulate TAD domains from each other rather than the genetic elements within a single TAD domain.

Digit insights

Now, a study by the lab of Denis Duboule at EPFL, with their colleagues at the University of Geneva, provides significant insights about TADs and how they organize DNA. "We were looking at DNA architecture and function," says researcher Pierre Fabre, who led the project.

Specifically, the scientists looked at a set of genes that Duboule's lab has longstanding expertise, the HoxD gene cluster, which controls digit development in mammalian embryos. The researchers used it as a model to learn about the interplay between multiple enhancer sequences within TADs, as well as "constitutive contacts", which refer to constant interactions between TADs and proteins that organize the packaging of HoxD genes into DNA chromatin, even without gene transcription going on.

The researchers combined chromosome conformation capture (4C-seq) and DNA fluorescent in situ hybridization (FISH) to measure compaction levels and TAD discreteness. They also made serial genomic deletions and inversions that impact the integrity of the HoxD chromatin domain and also cause remodeling of long-range regulatory elements. This allowed them to assess the robustness of the TAD architecture in this domain.

The data indicates that these TADs can host multiple associations between Hoxd genes and up to three of their enhancers, and that disrupting the 3D structure of chromatin leads to the remodeling of TAD structure. Additionally, CTCF seems to mediate the gating of long-range DNA contacts in a boundary-selection mechanism. "The building of the recomposed TAD depends on both distinct functional and intrinsic parameters such as the genomic distance," says Fabre.


University of Geneva

Swiss National Research Fund

European Research Council (SystemHox and RegulHox)


Pierre J. Fabre, Marion Leleu, Benjamin H. Mormann, Lucille Lopez-Delisle, Daan Noordermeer, Leonardo Beccari, Denis Duboule. Large scale genomic reorganization of topological domains at the HoxD locus. Genome Biology 18:149, 7 August 2017. DOI: 10.1186/s13059-017-1278-z

Ecole Polytechnique Fédérale de Lausanne

Related DNA Articles from Brightsurf:

A new twist on DNA origami
A team* of scientists from ASU and Shanghai Jiao Tong University (SJTU) led by Hao Yan, ASU's Milton Glick Professor in the School of Molecular Sciences, and director of the ASU Biodesign Institute's Center for Molecular Design and Biomimetics, has just announced the creation of a new type of meta-DNA structures that will open up the fields of optoelectronics (including information storage and encryption) as well as synthetic biology.

Solving a DNA mystery
''A watched pot never boils,'' as the saying goes, but that was not the case for UC Santa Barbara researchers watching a ''pot'' of liquids formed from DNA.

Junk DNA might be really, really useful for biocomputing
When you don't understand how things work, it's not unusual to think of them as just plain old junk.

Designing DNA from scratch: Engineering the functions of micrometer-sized DNA droplets
Scientists at Tokyo Institute of Technology (Tokyo Tech) have constructed ''DNA droplets'' comprising designed DNA nanostructures.

Does DNA in the water tell us how many fish are there?
Researchers have developed a new non-invasive method to count individual fish by measuring the concentration of environmental DNA in the water, which could be applied for quantitative monitoring of aquatic ecosystems.

Zigzag DNA
How the cell organizes DNA into tightly packed chromosomes. Nature publication by Delft University of Technology and EMBL Heidelberg.

Scientists now know what DNA's chaperone looks like
Researchers have discovered the structure of the FACT protein -- a mysterious protein central to the functioning of DNA.

DNA is like everything else: it's not what you have, but how you use it
A new paradigm for reading out genetic information in DNA is described by Dr.

A new spin on DNA
For decades, researchers have chased ways to study biological machines.

From face to DNA: New method aims to improve match between DNA sample and face database
Predicting what someone's face looks like based on a DNA sample remains a hard nut to crack for science.

Read More: DNA News and DNA Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to