Scientist emphasizes importance of multi-level thinking

August 17, 2017

An unusual paper "On multi-level thinking and scientific understanding" appears in the October issue of Advances in Atmospheric Sciences. The author is Professor Michael Edgeworth McIntyre from University of Cambridge, whose work in atmospheric dynamics is well known. He has also had longstanding interests in astrophysics, music, perception psychology, and biological evolution.

The paper touches on a range of deep questions within and outside the atmospheric sciences. They include insights into the nature of science itself, and of scientific understanding -- what it means to understand a scientific problem in depth -- and into the communication skills necessary to convey that understanding and to mediate collaboration across specialist disciplines.

The paper appears in a Special Issue arising from last year's Symposium held in Nanjing to commemorate the life of Professor Duzheng YE, who was well known as a national and international scientific leader and for his own wide range of interests, within and outside the atmospheric sciences. The symposium was organized by the Institute of Atmospheric Physics (IAP), Chinese Academy of Sciences, where Prof. YE had worked nearly 70 years before he passed away. Upon the invitation of Prof. Jiang ZHU, the Director General of IAP, also the Editor-in-Chief of Advances in Atmospheric Sciences (AAS), Prof. McIntyre agreed to contribute a review paper to an AAS special issue commemorating the centenary of Duzheng YE's birth. Prof. YE was also the founding Editor-in-Chief of this journal.

One of Professor McIntyre's themes is that we all have unconscious mathematics, including Euclidean geometry and the calculus of variations. This is easy to demonstrate and is key to understanding not only how science works but also, for instance, how music works. Indeed, it reveals some of the deepest connections between music and mathematics, going beyond the usual remarks about number-patterns. All this revolves around the biological significance of what Professor McIntyre calls the "organic-change principle".

Further themes include the scientific value of looking at a problem from more than one viewpoint, and the need to use more than one level of description. Many scientific and philosophical controversies stem from confusing one level of description with another, for instance applying arguments to one level that belong on another. This confusion can be especially troublesome when it comes to questions about human biology and human nature, and about what Professor YE called multi-level "orderly human activities".

Related to all these points are the contrasting modes of perception and understanding offered by the brain's left and right hemispheres. Our knowledge of their functioning has progressed far beyond the narrow clichés of popular culture, thanks to recent work in the neurosciences. The two hemispheres automatically give us different levels of description, and complementary views of a problem. Good science takes advantage of this. When the two hemispheres cooperate, with each playing to its own strengths, our problem-solving is at its most powerful.

The paper ends with three examples of unconscious assumptions that have impeded scientific progress in the past. Two of them are taken from Professor McIntyre's main areas of research. A third is from biology.
-end-


Institute of Atmospheric Physics, Chinese Academy of Sciences

Related Perception Articles from Brightsurf:

Intelligent cameras enhance human perception
A team of FAU researchers has developed an intelligent camera that achieves not only high spatial and temporal but also spectral resolution.

New perception metric balances reaction time, accuracy
Researchers at Carnegie Mellon University have developed a new metric for evaluating how well self-driving cars respond to changing road conditions and traffic, making it possible for the first time to compare perception systems for both accuracy and reaction time.

Sweet-taste perception changes as children develop
While adults prefer levels of sweetness similar to typical soft drinks, children and adolescents are less sensitive to the taste and prefer concentrations that are 50% sweeter, according to research by professor of food science and human nutrition M.

Optogenetic odors reveal the logic of olfactory perception
Using optogenetic control, researchers have created an electrical signature that is perceived as an odor in the brain's smell-processing center, the olfactory bulb, even though the odor does not exist.

Vision loss influences perception of sound
People with severe vision loss can less accurately judge the distance of nearby sounds, potentially putting them more at risk of injury.

Why visual perception is a decision process
A popular theory in neuroscience called predictive coding proposes that the brain produces all the time expectations that are compared with incoming information.

How the heart affects our perception
When we encounter a dangerous situation, signals from the brain make sure that the heart beats faster.

Changing how we think about warm perception
Perceiving warmth requires input from a surprising source: cool receptors.

Rhythmic perception in humans has strong evolutionary roots
So suggests a study that compares the behaviour of rodents and humans with respect to the detection rhythm, published in Journal of Comparative Psychology by Alexandre Celma-Miralles and Juan Manuel Toro, researchers at the Center for Brain and Cognition.

Approaching the perception of touch in the brain
More than ten percent of the cerebral cortex are involved in processing information about our sense of touch -- a larger area than previously thought.

Read More: Perception News and Perception Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.