Nav: Home

Progress toward personalized medicine

August 17, 2018

A few little cells that are different from the rest can have a big effect. For example, individual cancer cells may be resistant to a specific chemotherapy--causing a relapse in a patient who would otherwise be cured. In the journal Angewandte Chemie, scientists have now introduced a microfluidics-based chip for the manipulation and subsequent nucleic-acid analysis of individual cells. The technique uses local electric fields to highly efficiently "trap" the cells (dielectrophoresis).

Molecular analyses of individual cells are necessary to better understand the role of heterogenous cell populations in the development of diseases and to develop effective therapies for personalized medicine. Identifying individual cells in a mass of other cells is an enormous challenge in diagnostic medicine. The cells must be sorted, held, transferred into another container with an extremely small volume (< 1 μL) and then must undergo molecular analysis. Conventional methods are usually very time consuming and complex, as well as unreliable and inefficient. They can also compromise the viability of the cells, require large sample volumes, have a high risk of contamination, and/or require expensive instruments.

Scientists from the University of Washington (Seattle, USA), Iowa State University (Ames, USA), and Fred Hutchinson Cancer Research Center (Seattle, USA) have used microfluidic technology to overcome these problems. All of the necessary steps occur reliably on a specially developed microchip using minimal amounts of solvent and without requiring the cells to be marked. In contrast to conventional microfluidic chips, this one requires neither complex fabrication technology nor components like valves or agitators.

The Self-Digitization Dielectrophoretic (SD-DEP) chip is about the size of a coin and has two parallel microchannels (50 μm deep x 35 μm wide x 3.2 cm long) connected by numerous tiny little chambers. The openings of the microchannels are only 15 μm wide. A thin electrode is stretched along the length of the channels. The channels and chambers are filled with a buffer, an alternating voltage is applied, and the sample is added to one of the microchannels. The team headed by Robbyn K. Anand and Daniel T. Chiu used leukemia cells in their experiments.

Local maxima of the electric field occur at the narrow entrances to the chambers. Cells that enter the chambers are "trapped". Because the dimensions of the entrance are similar to the average size of a cell, only a single cell can be trapped by each chamber entrance. When the alternating current is switched off and the flow rate is increased by injection of the reagents required for subsequent analysis, the cells are washed into the chambers. An oil is then added to seal the chambers. The cells are then dissolved, and the nucleic acids are released and multiplied and can be identified as leukemia cells by a marker gene.

In future studies, the researchers hope to use the chip to determine the distribution of genetic mutations that are related to resistance in leukemia cells and thus may cause relapses.
-end-
(3176 characters)

About the Author

Daniel T. Chiu is the A. Bruce Montgomery Professor of Chemistry, Endowed Professor of Analytical Chemistry, Washington Research Foundation Professor, and Professor of Bioengineering at the University of Washington, Seattle. He is currently a member of the Center for Nanotechnology and the Neurobiology and Behavior Program at the University of Washington, as well as a member of the Cancer Consortium at the Fred Hutchinson Cancer Research Center.

http://depts.washington.edu/chem/people/faculty/chiu.html

Wiley

Related Personalized Medicine Articles:

Fruit flies help in the development of personalized medicine
It is common knowledge that there is a connection between our genes and the risk of developing certain diseases.
Expanding the limits of personalized medicine with high-performance computing
Imagine that you have a serious medical condition. Then imagine that when you visit a team of doctors, they could build an identical virtual 'twin' of the condition and simulate millions of ways to treat it until they develop an effective treatment.
Personalized medicine software vulnerability uncovered by Sandia researchers
A weakness in one common open source software for genomic analysis left DNA-based medical diagnostics vulnerable to cyberattacks.
'Organs in a dish' pave the way for personalized medicine in gut and liver disease
One of the most exciting advancements in stem cell research has been the development of organoid systems, which are organ-like three-dimensional structures that mimic their corresponding organ in vivo.
Understanding gene interactions holds key to personalized medicine, scientists say
Scientists outline a new framework for studying gene function -- not in isolation, gene by gene, but as a network, to understand how multiple genes and genetic background influence trait inheritance.
Mount Sinai researchers call for diversity in the next generation of personalized medicine
Researchers from the Icahn School of Medicine at Mount Sinai reveal that genomic data extracted from population biobanks across the globe contain much less ethnic diversity than desirable.
Researchers call for big data infrastructure to support future of personalized medicine
Researchers from the George Washington University, the US Food and Drug Administration, and industry leaders published in PLOS Biology, describing a standardized communication method for researchers performing high-throughput sequencing called BioCompute.
The growing role of precision and personalized medicine for cancer treatment
In a paper published in the September/December 2018 issue of TECHNOLOGY, a group of researchers from Rutgers University Department of Biomedicine Engineering have published a review paper on the transformative potential of precision and personalized medicine (PPM) for cancer treatment.
Edging closer to personalized medicine for patients with irregular heartbeat
Biomedical engineer Jon Silva led an international team that determined which patients would benefit the most from a commonly used drug treatment.
Research brings personalized medicine to treat leukemia one step closer
Scientists at the University of Birmingham have revealed the roles that different types of gene mutations play in causing blood cancers in a study that was the culmination of a decade's research.
More Personalized Medicine News and Personalized Medicine Current Events

Top Science Podcasts

We have hand picked the top science podcasts of 2019.
Now Playing: TED Radio Hour

In & Out Of Love
We think of love as a mysterious, unknowable force. Something that happens to us. But what if we could control it? This hour, TED speakers on whether we can decide to fall in — and out of — love. Guests include writer Mandy Len Catron, biological anthropologist Helen Fisher, musician Dessa, One Love CEO Katie Hood, and psychologist Guy Winch.
Now Playing: Science for the People

#543 Give a Nerd a Gift
Yup, you guessed it... it's Science for the People's annual holiday episode that helps you figure out what sciency books and gifts to get that special nerd on your list. Or maybe you're looking to build up your reading list for the holiday break and a geeky Christmas sweater to wear to an upcoming party. Returning are pop-science power-readers John Dupuis and Joanne Manaster to dish on the best science books they read this past year. And Rachelle Saunders and Bethany Brookshire squee in delight over some truly delightful science-themed non-book objects for those whose bookshelves are already full. Since...
Now Playing: Radiolab

An Announcement from Radiolab