Converting solar energy to hydrogen fuel, with help from photosynthesis

August 17, 2020

WASHINGTON, Aug. 17, 2020 -- Global economic growth comes with increasing demand for energy, but stepping up energy production can be challenging. Recently, scientists have achieved record efficiency for solar-to-fuel conversion, and now they want to incorporate the machinery of photosynthesis to push it further.

The researchers will present their results today at the American Chemical Society (ACS) Fall 2020 Virtual Meeting & Expo. ACS is holding the meeting through Thursday. It features more than 6,000 presentations on a wide range of science topics.

"We want to fabricate a photocatalytic system that uses sunlight to drive chemical reactions of environmental importance," says Lilac Amirav, Ph.D., the project's principal investigator.

Specifically, her group at the Israel Institute of Technology is designing a photocatalyst that can break down water into hydrogen fuel. "When we place our rod-shaped nanoparticles in water and shine light on them, they generate positive and negative electric charges," Amirav says. "The water molecules break; the negative charges produce hydrogen (reduction), and the positive charges produce oxygen (oxidation). The two reactions, involving the positive and negative charges, must take place simultaneously. Without taking advantage of the positive charges, the negative charges cannot be routed to produce the desired hydrogen."

If the positive and negative charges, which are attracted to one another, manage to recombine, they cancel each other, and the energy is lost. So, to make sure the charges are far enough apart, the team has built unique heterostructures comprised of a combination of different semiconductors, together with metal and metal oxide catalysts. Using a model system, they studied the reduction and oxidation reactions separately and altered the heterostructure to optimize fuel production.

In 2016, the team designed a heterostructure with a spherical cadmium-selenide quantum dot embedded within a rod-shaped piece of cadmium sulfide. A platinum metallic particle was located at the tip. The cadmium-selenide particle attracted positive charges, while negative charges accumulated on the tip. "By adjusting the size of the quantum dot and the length of the rod, as well as other parameters, we achieved 100% conversion of sunlight to hydrogen from water reduction," Amirav says. A single photocatalyst nanoparticle can produce 360,000 molecules of hydrogen per hour, she notes.

The group published their results in the ACS journal Nano Letters. But in these experiments, they studied only half of the reaction (the reduction). For proper function, the photocatalytic system must support both reduction and oxidation reactions. "We were not converting solar energy into fuel yet," Amirav says. "We still needed an oxidation reaction that would continually provide electrons to the quantum dot." The water oxidation reaction occurs in a multi-step process, and as a result remains a significant challenge. In addition, its byproducts seem to compromise the stability of the semiconductor.

Together with collaborators, the group explored a new approach -- looking for different compounds that could be oxidized in lieu of water -- which led them to benzylamine. The researchers found that they could produce hydrogen from water, while simultaneously transforming benzylamine to benzaldehyde. "With this research, we have transformed the process from photocatalysis to photosynthesis, that is, genuine conversion of solar energy into fuel," Amirav says. The photocatalytic system performs true conversion of solar power into storable chemical bonds, with a maximum of 4.2% solar-to-chemical energy conversion efficiency. "This figure establishes a new world record in the field of photocatalysis, and doubles the previous record," she notes. "The U.S. Department of Energy defined 5-10% as the 'practical feasibility threshold' for generating hydrogen through photocatalysis. Hence, we are on the doorstep of economically viable solar-to-hydrogen conversion."

These impressive results have motivated the researchers to see if there are other compounds with high solar-to-chemical conversions. To do so, the team is using artificial intelligence. Through a collaboration, the researchers are developing an algorithm to search chemical structures for an ideal fuel-producing compound. In addition, they are investigating ways to improve their photosystem, and one way might be to draw inspiration from nature. A protein complex in plant cell membranes that comprises the electrical circuitry of photosynthesis was successfully combined with nanoparticles. Amirav says that this artificial system so far has proven fruitful, supporting water oxidation while providing photocurrent than is 100 times larger than that produced by other similar systems.
-end-
The researchers acknowledge funding from the Horizon 2020 program of the European Commission and the Israeli Ministry of National Infrastructures, Energy and Water Resources.

The American Chemical Society (ACS) is a nonprofit organization chartered by the U.S. Congress. ACS' mission is to advance the broader chemistry enterprise and its practitioners for the benefit of Earth and its people. The Society is a global leader in providing access to chemistry-related information and research through its multiple research solutions, peer-reviewed journals, scientific conferences, eBooks and weekly news periodical Chemical & Engineering News. ACS journals are among the most cited, most trusted and most read within the scientific literature; however, ACS itself does not conduct chemical research. As a specialist in scientific information solutions (including SciFinder® and STN®), its CAS division powers global research, discovery and innovation. ACS' main offices are in Washington, D.C., and Columbus, Ohio.

To automatically receive press releases from the American Chemical Society, contact newsroom@acs.org.

Note to journalists: Please report that this research was presented at a meeting of the American Chemical Society.

Follow us: Twitter | Facebook

Title

Towards solar factories

Abstract

The solar-driven photocatalytic splitting of water into hydrogen and oxygen is a potential source of clean and renewable fuel. However, four decades of global research have proven this multi-step reaction to be highly challenging. Here, I will present our strategies, and most recent results, in taking photocatalyst production to new and unexplored frontiers, while exploring solar to chemical conversion that goes beyond water splitting. I will focus on unique design of innovative nano scale particles, which harness nano phenomena for improved activity, and methodologies for the construction of sophisticated heterostructures. I will share our design rules and accumulated insights, which enabled us to demonstrate efficient, and stable, full-cycle endothermic redox transformations, realizing a genuine solar-to-fuel energy conversion, with state of the art efficiencies of up to 4.2%.

American Chemical Society

Related Hydrogen Articles from Brightsurf:

Solar hydrogen: let's consider the stability of photoelectrodes
As part of an international collaboration, a team at the HZB has examined the corrosion processes of high-quality BiVO4 photoelectrodes using different state-of-the-art characterisation methods.

Hydrogen vehicles might soon become the global norm
Roughly one billion cars and trucks zoom about the world's roadways.

Hydrogen economy with mass production of high-purity hydrogen from ammonia
The Korea Institute of Science and Technology (KIST) has made an announcement about the technology to extract high-purity hydrogen from ammonia and generate electric power in conjunction with a fuel cell developed by a team led by Young Suk Jo and Chang Won Yoon from the Center for Hydrogen and Fuel Cell Research.

Superconductivity: It's hydrogen's fault
Last summer, it was discovered that there are promising superconductors in a special class of materials, the so-called nickelates.

Hydrogen energy at the root of life
A team of international researchers in Germany, France and Japan is making progress on answering the question of the origin of life.

Hydrogen alarm for remote hydrogen leak detection
Tomsk Polytechnic University jointly with the University of Chemistry and Technology of Prague proposed new sensors based on widely available optical fiber to ensure accurate detection of hydrogen molecules in the air.

Preparing for the hydrogen economy
In a world first, University of Sydney researchers have found evidence of how hydrogen causes embrittlement of steels.

Hydrogen boride nanosheets: A promising material for hydrogen carrier
Researchers at Tokyo Institute of Technology, University of Tsukuba, and colleagues in Japan report a promising hydrogen carrier in the form of hydrogen boride nanosheets.

World's fastest hydrogen sensor could pave the way for clean hydrogen energy
Hydrogen is a clean and renewable energy carrier that can power vehicles, with water as the only emission.

Chemical hydrogen storage system
Hydrogen is a highly attractive, but also highly explosive energy carrier, which requires safe, lightweight and cheap storage as well as transportation systems.

Read More: Hydrogen News and Hydrogen Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.