Using personal frequency to control brain activity

August 17, 2020

Stroke, Parkinson's disease and depression - these medical illnesses have one thing in common: they are caused by changes in brain functions. For a long time, research has therefore been conducted into ways of influencing individual brain functions without surgery in order to compensate for these conditions.

Scientists at the Max Planck Institute for Human Cognitive and Brain Sciences in Leipzig, Germany, have taken a decisive step. They have succeeded in precisely influencing the functioning of a single area of the brain. For a few minutes, they inhibited exactly the area that processes the sense of touch by specifically intervening in its rhythm. As a result, the area that was less networked with other brain regions, its so-called functional connectivity, decreased, and thus also the exchange of information with other brain networks.

This was possible because the researchers had previously determined each participant's individual brain rhythm that occurs when perceiving touch. With the personal frequency, they were able to modulate the targeted areas of the brain one at a time in a very precise manner using what is known as transcranial alternating current stimulation. "This is an enormous advance," explains Christopher Gundlach, first author of the underlying study. "In previous studies, connectivity fluctuated extensively when the current was distributed in different areas of the brain. The electrical current randomly sought its own path in the brain and thus affected different brain areas simultaneously in a rather imprecise manner.

In a preliminary study, the neuroscientists had already observed that this form of stimulation not only reduces the exchange of the targeted brain networks with other networks, it also affects the brain's ability to process information, in this case the sense of touch. When the researchers inhibited the responsible somatosensory network, the perception threshold increased. The study participants only perceived stimuli when they were correspondingly strong. When, on the other hand, they stimulated the region, the threshold value dropped and the study participants already felt very gentle electrical stimuli.

"The deliberate change in brain rhythm lasted only briefly. As soon as the stimulation is switched off, the effect disappears again," explains study leader Bernhard Sehm. "Nevertheless, the results are an important step towards a targeted therapy for diseases or disorders caused by disturbed brain functions". Targeted brain stimulation could help to improve, direct and, if necessary, attenuate the flow of information.
-end-


Max Planck Institute for Human Cognitive and Brain Sciences

Related Brain Articles from Brightsurf:

Glioblastoma nanomedicine crosses into brain in mice, eradicates recurring brain cancer
A new synthetic protein nanoparticle capable of slipping past the nearly impermeable blood-brain barrier in mice could deliver cancer-killing drugs directly to malignant brain tumors, new research from the University of Michigan shows.

Children with asymptomatic brain bleeds as newborns show normal brain development at age 2
A study by UNC researchers finds that neurodevelopmental scores and gray matter volumes at age two years did not differ between children who had MRI-confirmed asymptomatic subdural hemorrhages when they were neonates, compared to children with no history of subdural hemorrhage.

New model of human brain 'conversations' could inform research on brain disease, cognition
A team of Indiana University neuroscientists has built a new model of human brain networks that sheds light on how the brain functions.

Human brain size gene triggers bigger brain in monkeys
Dresden and Japanese researchers show that a human-specific gene causes a larger neocortex in the common marmoset, a non-human primate.

Unique insight into development of the human brain: Model of the early embryonic brain
Stem cell researchers from the University of Copenhagen have designed a model of an early embryonic brain.

An optical brain-to-brain interface supports information exchange for locomotion control
Chinese researchers established an optical BtBI that supports rapid information transmission for precise locomotion control, thus providing a proof-of-principle demonstration of fast BtBI for real-time behavioral control.

Transplanting human nerve cells into a mouse brain reveals how they wire into brain circuits
A team of researchers led by Pierre Vanderhaeghen and Vincent Bonin (VIB-KU Leuven, Université libre de Bruxelles and NERF) showed how human nerve cells can develop at their own pace, and form highly precise connections with the surrounding mouse brain cells.

Brain scans reveal how the human brain compensates when one hemisphere is removed
Researchers studying six adults who had one of their brain hemispheres removed during childhood to reduce epileptic seizures found that the remaining half of the brain formed unusually strong connections between different functional brain networks, which potentially help the body to function as if the brain were intact.

Alcohol byproduct contributes to brain chemistry changes in specific brain regions
Study of mouse models provides clear implications for new targets to treat alcohol use disorder and fetal alcohol syndrome.

Scientists predict the areas of the brain to stimulate transitions between different brain states
Using a computer model of the brain, Gustavo Deco, director of the Center for Brain and Cognition, and Josephine Cruzat, a member of his team, together with a group of international collaborators, have developed an innovative method published in Proceedings of the National Academy of Sciences on Sept.

Read More: Brain News and Brain Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.