Quantum-mechanical interaction of two time crystals has been experimentally demonstrated

August 17, 2020

Quantum time crystals are systems characterised by spontaneously emerging periodic order in the time domain. In a regular crystal, atoms form periodic order in space, while in a time crystal, a periodic process in time (like oscillation, rotation etc.) spontaneously emerges.

While originally a phase of broken time translation symmetry was a just theoretical exercise, a few practical realisations of time crystals have been reported, such as in previous Aalto research on time crystals.

However, the dynamics and interactions between time crystals have not been investigated experimentally until now

Aalto Senior Scientist, Vladimir Eltsov, explains, 'We have demonstrated the flow of particles between two time crystals as predicted by the famous Josephson effect in quantum mechanics, while coherent time evolution, which is an essence of a time crystal, remains intact'.

Time crystals keep coherence over time, resistant to environmental noise. This is one essential property for building quantum devices (like qubits in a quantum computer). The new finding offers a possibility to precisely manipulate the quantum state.

Eltsov adds, 'In an approach to quantum information processing adopted by the major players (like Google), qubits are based on superconducting quantum electronics: Here islands of a superconductor are interacting by the Josephson effect. In the Josephson effect, coherent electrons flow back and forth between islands in a very specific way, depending on their quantum states'.

For this experiment, a liquid is built from 3He atoms which is cooled to a very low temperature (below 200 microkelvins), where it becomes superfluid. The 3He atoms have a magnetic moment, and at those low temperatures, all of these tiny magnets carried by each atom start to play together. The time crystalline periodic process in this system is the continuous rotation of the total magnetic moment. The constituent particles which are exchanged in the Josephson effect are magnetic quantum excitations, magnons.

Eltsov concludes, 'There is material development effort at some other labs to build similar time crystals based on coherent magnetic phenomena which are robust even at room temperature. Thus in some future, it might enable the construction of a quantum computer operating at room temperature'.
-end-
The experiment was performed at the Low Temperature Laboratory of the Department of Applied Physics at Aalto University in collaboration with physicists from Lancaster University (UK), University of London (UK), Yale University (USA) and the Landau Institute for Theoretical Physics (Russia). The research has just been published in Nature Materials. Support was given by the European Union's Horizon 2020 research and innovation programme.

Aalto University

Related Quantum Computer Articles from Brightsurf:

UCLA computer scientists set benchmarks to optimize quantum computer performance
Two UCLA computer scientists have shown that existing compilers, which tell quantum computers how to use their circuits to execute quantum programs, inhibit the computers' ability to achieve optimal performance.

Simulating quantum 'time travel' disproves butterfly effect in quantum realm
Using a quantum computer to simulate time travel, researchers have demonstrated that, in the quantum realm, there is no 'butterfly effect.' In the research, information--qubits, or quantum bits--'time travel' into the simulated past.

Solving materials problems with a quantum computer
Scientists at Argonne and the University of Chicago have developed a method paving the way to using quantum computers to simulate realistic molecules and complex materials.

Orbital engineering of quantum confinement in high-Al-content AlGaN quantum well
Recently, professor Kang's group focus on the limitation of quantum confine band offset model, the hole states delocalization in high-Al-content AlGaN quantum well are understood in terms of orbital intercoupling.

Quantum leap: Photon discovery is a major step toward at-scale quantum technologies
A team of physicists at the University of Bristol has developed the first integrated photon source with the potential to deliver large-scale quantum photonics.

Wiring the quantum computer of the future: A novel simple build with existing technology
Efficient quantum computing is expected to enable advancements that are impossible with classical computers.

To tune up your quantum computer, better call an AI mechanic
A paper in the journal Physical Review Applied outlines a way to teach an AI to make an interconnected set of adjustments to the quantum dots that could form the qubits in a quantum computer's processor.

USTC realizes the first quantum-entangling-measurements-enhanced quantum orienteering
Researchers enhanced the performance of quantum orienteering with entangling measurements via photonic quantum walks.

Computer-based weather forecast: New algorithm outperforms mainframe computer systems
The exponential growth in computer processing power seen over the past 60 years may soon come to a halt.

What a pair! Coupled quantum dots may offer a new way to store quantum information
Researchers at the National Institute of Standards and Technology (NIST) and their colleagues have for the first time created and imaged a novel pair of quantum dots -- tiny islands of confined electric charge that act like interacting artificial atoms.

Read More: Quantum Computer News and Quantum Computer Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.