Microbe has huge role in ocean life, carbon cycle

August 18, 2005

CORVALLIS, Ore. - Researchers at Oregon State University and Diversa Corporation have discovered that the smallest free-living cell known also has the smallest genome, or genetic structure, of any independent cell - and yet it dominates life in the oceans, thrives where most other cells would die, and plays a huge role in the cycling of carbon on Earth.

In nature, apparently, bigger is not always better.

In a publication today in the journal Science, scientists outlined the growing knowledge about SAR11, a group of bacteria so dominant that their combined weight exceeds that of all the fish in the world's oceans. In a marine environment that's low in nutrients and other resources, they are able to survive and replicate in extraordinary numbers - a milliliter of sea water off the Oregon coast might contain 500,000 of these cells.

"The ocean is a very competitive environment, and these bacteria apparently won the race," said Stephen Giovannoni, an OSU professor of microbiology. "Our analysis of the SAR11 genome indicates that they became the dominant life form in the oceans largely by being the simplest."

The new study outlines how SAR11 has one of the most compact, streamlined genomes ever discovered, with only 1.3 million base pairs - the smallest ever found in a free living organism and a number that's literally tiny compared to something like the human genome.

"SAR11 has almost no wasted DNA," Giovannoni said. "This organism is extremely small and efficient. Every genetic part serves a purpose, more so than any other genome we've studied."

The organism is able to survive as an unattached cell in a hostile environment, has a complete set of biosynthetic pathways, and can reproduce efficiently by consuming dissolved organic matter.

"By comparison, humans are mostly junk DNA, with large parts of the human genome having no important function," Giovannoni said.

This type of genome streamlining, researchers say, appears to be a major factor in the evolutionary success of SAR11, which they believe may have been thriving for a billion years or more. One scientific hypothesis holds that natural selection acts to reduce genome size because of the metabolic burden of replicating "junk" DNA with no adaptive value - SAR11 supports that theory.

Researchers are particularly interested in SAR11, Giovannoni said, because of the critical role it plays in geochemistry. Photosynthesis is a process used by plants to convert sunlight energy into organic molecules, creating the foundation of the food chain and producing oxygen. About half of photosynthesis and the resulting oxygen on Earth are produced by algae in the ocean, and microbes like SAR11 recycle organic carbon - producing the nutrients needed for algal growth.

"Ultimately, SAR11 through its sheer abundance plays a major role in the Earth's carbon cycle," Giovannoni said. "Quite simply, this is something we need to know more about. SAR11 is a major consumer of the organic carbon in the oceans, which nearly equals the amount of carbon dioxide in the atmosphere. The carbon cycle affects all forms of plant and animal life, not to mention the atmosphere and fossil fuel formation."

SAR11 was first discovered at OSU in 1990. Since then researchers have learned that populations of SAR11 increase during the summer and decrease during the winter, in a cycle that correlates to the ebb and flow of organic carbon in the ocean surface. Molecular probes, gene cloning, sequencing techniques and other tools have been used in this exploration.
-end-
Collaborators on the new study included the University of Hawaii and Diversa Corporation of San Diego. Funding was provided by the National Science Foundation, Diversa Corporation, the Gordon and Betty Moore Foundation, and the OSU Center for Gene Research and Biotechnology.

By David Stauth, 541-737-0787
SOURCE: Stephen Giovannoni, 541-737-1835

Oregon State University

Related Bacteria Articles from Brightsurf:

Siblings can also differ from one another in bacteria
A research team from the University of Tübingen and the German Center for Infection Research (DZIF) is investigating how pathogens influence the immune response of their host with genetic variation.

How bacteria fertilize soya
Soya and clover have their very own fertiliser factories in their roots, where bacteria manufacture ammonium, which is crucial for plant growth.

Bacteria might help other bacteria to tolerate antibiotics better
A new paper by the Dynamical Systems Biology lab at UPF shows that the response by bacteria to antibiotics may depend on other species of bacteria they live with, in such a way that some bacteria may make others more tolerant to antibiotics.

Two-faced bacteria
The gut microbiome, which is a collection of numerous beneficial bacteria species, is key to our overall well-being and good health.

Microcensus in bacteria
Bacillus subtilis can determine proportions of different groups within a mixed population.

Right beneath the skin we all have the same bacteria
In the dermis skin layer, the same bacteria are found across age and gender.

Bacteria must be 'stressed out' to divide
Bacterial cell division is controlled by both enzymatic activity and mechanical forces, which work together to control its timing and location, a new study from EPFL finds.

How bees live with bacteria
More than 90 percent of all bee species are not organized in colonies, but fight their way through life alone.

The bacteria building your baby
Australian researchers have laid to rest a longstanding controversy: is the womb sterile?

Hopping bacteria
Scientists have long known that key models of bacterial movement in real-world conditions are flawed.

Read More: Bacteria News and Bacteria Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.