Monkey wrench in solar system evolution

August 18, 2005

A U of T scientist has found unexpectedly 'young' material in meteorites - a discovery that breaks open current theory on the earliest events of the solar system.

A paper published today in the August issue of Nature reports that the youngest known chondrules - the small grains of mineral that make up certain meteorites - have been identified in the meteorites known as Gujba and Hammadah al Hamra.

Researchers who have studied chondrules generally agree that most were formed as a sudden, repetitive heat, likely from a shock wave, condensed the nebula of dust floating around the early Sun. Thinking that an analysis of the chondrules in Gujba and Hammadah al Hamra would be appropriate for accurately dating this process, U of T geologist Yuri Amelin, together with lead author Alexander Krot of the University of Hawaii, studied the chondrules' mineralogical structure and determined their isotopic age. "It soon became clear that these particular chondrules were not of a nebular origin," says Amelin. "And the ages were quite different from what was expected. It was exciting."

Amelin explains that not only were these chondrules not formed by a shock wave, but rather emerged much later than other chondrules. "They actually post-date the oldest asteroids," he says. "We think these chondrules were formed by a giant plume of vapour produced when two planetary embryos, somewhere between moon-size and Mars-size, collided."

What does this mean in the grand scheme of things? The evolution of the solar system has traditionally been seen as a linear process, through which gases around the early sun gradually cooled to form small particles that eventually clumped into asteroids and planets. Now there is evidence of chondrules forming at two very distinct times, and evidence that embryo planets already existed when chondrules were still forming. "It moves our understanding from order to disorder," Amelin admits. "But I'm sure that as new data is collected, a new order will emerge."
-end-
Financial support for this project was provided by NASA and the Canadian Space Agency.

CONTACT: Sonnet L'Abbé
U of T Public Affairs
416-978-2988
sonnet.labbe@utoronto.ca

Professor Yuri Amelin
Geological Survey of Canada
613-995-3471
yamelin@nrcan.gc.ca

University of Toronto

Related Solar System Articles from Brightsurf:

Ultraviolet shines light on origins of the solar system
In the search to discover the origins of our solar system, an international team of researchers, including planetary scientist and cosmochemist James Lyons of Arizona State University, has compared the composition of the sun to the composition of the most ancient materials that formed in our solar system: refractory inclusions in unmetamorphosed meteorites.

Second alignment plane of solar system discovered
A study of comet motions indicates that the Solar System has a second alignment plane.

Pressure runs high at edge of solar system
Out at the boundary of our solar system, pressure runs high.

What a dying star's ashes tell us about the birth of our solar system
A UA-led team of researchers discovered a dust grain forged in a stellar explosion before our solar system was born.

What scientists found after sifting through dust in the solar system
Two recent studies report discoveries of dust rings in the inner solar system: a dust ring at Mercury's orbit, and a group of never-before-detected asteroids co-orbiting with Venus, supplying the dust in Venus' orbit.

Discovered: The most-distant solar system object ever observed
A team of astronomers has discovered the most-distant body ever observed in our solar system.

Discovery of the first body in the Solar System with an extrasolar origin
Asteroid 2015 BZ509 is the very first object in the Solar System shown to have an extrasolar origin.

First interstellar immigrant discovered in the solar system
A new study has discovered the first known permanent immigrant to our solar system.

A star disturbed the comets of the solar system in prehistory
About 70,000 years ago, when the human species was already on Earth, a small reddish star approached our solar system and gravitationally disturbed comets and asteroids.

Scientists detect comets outside our solar system
Scientists from MIT and other institutions, working closely with amateur astronomers, have spotted the dusty tails of six exocomets -- comets outside our solar system -- orbiting a faint star 800 light years from Earth.

Read More: Solar System News and Solar System Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.