Case Western Reserve University chemist takes on HIV-1 virus with $1M support from NIH

August 18, 2006

CLEVELAND--Case Western Reserve University chemist Mary Barkley wants to find out what makes two pieces of a protein in the AIDS virus begin the biochemical processes that lead to AIDS.

A four-year, $ 1.029 million grant from the National Institutes of Health will support Barkley's work in a new area of AIDS research that examines the chemical processes between the two pieces of reverse transcriptase (RT) protein that mobilizes the HIV-1 virus into action.

For the more than 40 million humans suffering worldwide from AIDS, researchers like Barkley, the M. Roger Clapp University Professor in Case's College of Arts and Sciences, offer hope in finding new therapies for their disease by understanding the basic science of how the AIDS virus HIV-1 functions.

But Barkley is finding that the protein in this virus is not acting like other proteins she encounters in her lab. The flexibility of the AIDS virus that robs humans of their immune defenses has stumped her time and again.

A pilot study in 2003-04 from the American Foundation for AIDS Research provided the groundwork that led to her recent award from the NIH's National Institute of General Medical Sciences.

Barkley's lab is taking a new approach to studying the enzyme RT that copies the viral RNA into the virus' DNA that is then inserted into the human host cell's chromosomal DNA by another HIV-1 enzyme called integrase.

Thousands of journal papers over the past decades have mostly examined the catalytic activity of the HIV-1's RT enzyme and its end products.

Barkley said researchers assumed the RT was like a rock where the two pieces or subunits of the RT protein clung together in order for it to be able to copy the RNA into DNA.

Some of the current drugs called nonnucleoside RT inhibitors used by doctors to treat HIV-1 target the enhancement or lessening of the two subunits of proteins coming together.

While it has been known for years that the subunits can come apart, mostly everyone has ignored this fact in research, said Barkley.

She sees the potential of interfering with how the subunits come together as one way of thwarting the spread of the virus.

"We know that the subunits have to be together to catalyze DNA synthesis, and that the second generation RT inhibitors can alter how tightly the two subunits stick together," Barkley explains. "We think the way that the subunits come together play a role in the protein's -- and thus the patient's -- resistance to drugs and in how the drugs inhibit the DNA synthesis."

"No one has looked at how these pieces come together and how it is related to the catalysis other than they knew it had to happen for the virus to grow. This is where we started working," she said.

Barkley began work on the HIV-1's reverse transcriptase enzyme in 1998 through collaboration with Stuart Le Grice, the former director of the Center for AIDS Research at the Case School of Medicine.

She said researchers have crystallized the RT and then looked its 3-dimensional structure using x-ray diffraction, but according to Barkley, the structure does not tell how it works.

She will collaborate with Patrick Wintrode in the Case School of Medicine's department of physiology and biophysics, who uses a new technique that tracks the fast exchanges of protons for deuterons on the protein's surface. This technique will provide another view of how the protein functions and as well as answers to what happens when the two subunits are apart and then come together.

"It has been difficult," said Barkley. "Everything we have done with this protein is that you try it and think it is going to be a straightforward method that is used on many other proteins and will work on this one, but it doesn't work as expected."

This new approach may be the answer to understanding the protein, she said.
-end-
Case Western Reserve University is among the nation's leading research institutions. Founded in 1826 and shaped by the unique merger of the Case Institute of Technology and Western Reserve University, Case is distinguished by its strengths in education, research, service, and experiential learning. Located in Cleveland, Case offers nationally recognized programs in the Arts and Sciences, Dental Medicine, Engineering, Law, Management, Medicine, Nursing, and Social Work. http://www.case.edu.

Case Western Reserve University

Related DNA Articles from Brightsurf:

A new twist on DNA origami
A team* of scientists from ASU and Shanghai Jiao Tong University (SJTU) led by Hao Yan, ASU's Milton Glick Professor in the School of Molecular Sciences, and director of the ASU Biodesign Institute's Center for Molecular Design and Biomimetics, has just announced the creation of a new type of meta-DNA structures that will open up the fields of optoelectronics (including information storage and encryption) as well as synthetic biology.

Solving a DNA mystery
''A watched pot never boils,'' as the saying goes, but that was not the case for UC Santa Barbara researchers watching a ''pot'' of liquids formed from DNA.

Junk DNA might be really, really useful for biocomputing
When you don't understand how things work, it's not unusual to think of them as just plain old junk.

Designing DNA from scratch: Engineering the functions of micrometer-sized DNA droplets
Scientists at Tokyo Institute of Technology (Tokyo Tech) have constructed ''DNA droplets'' comprising designed DNA nanostructures.

Does DNA in the water tell us how many fish are there?
Researchers have developed a new non-invasive method to count individual fish by measuring the concentration of environmental DNA in the water, which could be applied for quantitative monitoring of aquatic ecosystems.

Zigzag DNA
How the cell organizes DNA into tightly packed chromosomes. Nature publication by Delft University of Technology and EMBL Heidelberg.

Scientists now know what DNA's chaperone looks like
Researchers have discovered the structure of the FACT protein -- a mysterious protein central to the functioning of DNA.

DNA is like everything else: it's not what you have, but how you use it
A new paradigm for reading out genetic information in DNA is described by Dr.

A new spin on DNA
For decades, researchers have chased ways to study biological machines.

From face to DNA: New method aims to improve match between DNA sample and face database
Predicting what someone's face looks like based on a DNA sample remains a hard nut to crack for science.

Read More: DNA News and DNA Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.