NSF announces Expeditions in Computing Awards

August 18, 2008

The Directorate for Computer and Information Science and Engineering (CISE) at the National Science Foundation (NSF) has established four new Expeditions in Computing. Each of these $10 million grants will allow teams of researchers and educators to pursue far-reaching research agendas that promise significant advances in the computing frontier and great benefit to society.

"We created the Expeditions program to encourage the research community to send us their brightest and boldest ideas," said Jeannette Wing, NSF's assistant director for CISE. "We received an overwhelming response, and I'm delighted with the results of our first annual competition. The four Expeditions together push both the depth and breadth of our field: pursuing longstanding scientific questions of computing, creating a new field of computational sustainability, experimenting with novel technologies for secure, ubiquitous computing and communications of the future, and exploring what we even think of as computing."

The projects are summarized below.

In their Expedition to Understand, Cope with, and Benefit From Intractability, Sanjeev Arora and his collaborators at Princeton University, Rutgers University, New York University and the Institute for Advanced Study will attack some of the deepest and hardest problems in computer science, striving to bridge fundamental gaps in our understanding about the power and limits of efficient algorithms. Computational intractability, a concept that permeates science, mathematics and engineering, limits our ability to understand nature or to design systems. The PIs hope to better understand the boundary between the tractable and the intractable. This has the potential to revolutionize our understanding of algorithmic processes in a host of disciplines and to cast new light on fields such as quantum computing, secure cryptography and pseudorandomness. The research team plans to draw on ideas from diverse fields including algorithms, complexity, cryptography, analysis, geometry, combinatorics and quantum mechanics.

In the Expedition Computational Sustainability: Computational Methods for a Sustainable Environment, Economy, and Society, Carla Gomes and her colleagues at Cornell University, Bowdoin College, the Conservation Fund, Howard University, Oregon State University and the Pacific Northwest National Laboratory will explore the development and application of computational methods to enable a sustainable environment, economy and society. By tackling challenges that have not traditionally been addressed by computational approaches, Gomes and her team hope to create a new field of computational sustainability--much like computational biology has arisen in past decades--that will stimulate new research synergies across the areas of constraint optimization, dynamical systems, and machine learning. The research team is highly interdisciplinary, bringing together computer scientists, applied mathematicians, economists, biologists and environmental scientists.

In the Open Programmable Mobile Internet 2020 project, Nick McKeown and his colleages at Stanford University address fundamental issues emerging in the forthcoming broadband wireless mobile revolution. It aims to create an "open" alternative to mobile ubiquitous computing and communication that can spur innovations, which will have a dramatic impact on the choices users will have in the way their data and information is computed, stored and communicated. Their architecture will enable: identity-based computing that frees us from managing a large number of physical and digital keys and enables the development of an integrated security infrastructure; a fluid computing experience that provides seamless access to data and applications anywhere and on any available network; an open, programmable and secure environment, where it is easy both to write and deploy applications on devices that are secure and to enable remote services and backup storage in the cloud; and fast radio access networks where new radio technology mitigates interference, exploits diversity at all levels and improves transmit channel knowledge.

In the Molecular Programming Project, Erik Winfree and his colleagues at the California Institute of Technology and University of Washington will develop fundamental computer science principles for programming information-bearing molecules like DNA and RNA polymers and demonstrate their application experimentally. Inspired by the biomolecular programs of life--from the low-level operating system controlling cell metabolism to the high-level code for development, the process by which a single cell becomes an entire organism--Winfree and his colleagues are working to create analogous molecular programs using non-living chemistry. The objects of their study, molecular programs, are collections of molecules that may perform a computation, fabricate an object or control a system of molecular sensors and actuators. The project aims to develop tools and theories for molecular programming--such as programming languages and compilers--that will enable systematic design and implementation of technological and biotechnological applications that require information processing and decision-making to be embedded within and carried out by chemical processes.

CISE anticipates hosting an Expeditions competition annually, with three new awards anticipated each year. "Because of their exceptional promise, four projects were funded in this, the first year of the program," said Timothy Pinkston, CISE Expeditions program director at NSF. "We can't wait to see the next cohort of proposals in the second annual competition, which is due to begin shortly."

National Science Foundation

Related Computer Articles from Brightsurf:

UCLA computer scientists set benchmarks to optimize quantum computer performance
Two UCLA computer scientists have shown that existing compilers, which tell quantum computers how to use their circuits to execute quantum programs, inhibit the computers' ability to achieve optimal performance.

Digitize your dog into a computer game
Researchers from CAMERA at the University of Bath have developed motion capture technology that enables you to digitise your dog without a motion capture suit and using only one camera.

Stabilizing brain-computer interfaces
Researchers from Carnegie Mellon University (CMU) and the University of Pittsburgh (Pitt) have published research in Nature Biomedical Engineering that will drastically improve brain-computer interfaces and their ability to remain stabilized during use, greatly reducing or potentially eliminating the need to recalibrate these devices during or between experiments.

Computer-generated genomes
Professor Beat Christen, ETH Zurich to speak in the AAAS 2020 session, 'Synthetic Biology: Digital Design of Living Systems.' Christen will describe how computational algorithms paired with chemical DNA synthesis enable digital manufacturing of biological systems up to the size of entire microbial genomes.

Computer-based weather forecast: New algorithm outperforms mainframe computer systems
The exponential growth in computer processing power seen over the past 60 years may soon come to a halt.

A computer that understands how you feel
Neuroscientists have developed a brain-inspired computer system that can look at an image and determine what emotion it evokes in people.

Computer program looks five minutes into the future
Scientists from the University of Bonn have developed software that can look minutes into the future: The program learns the typical sequence of actions, such as cooking, from video sequences.

Computer redesigns enzyme
University of Groningen biotechnologists used a computational method to redesign aspartase and convert it to a catalyst for asymmetric hydroamination reactions.

Mining for gold with a computer
Engineers from Texas A&M University and Virginia Tech report important new insights into nanoporous gold -- a material with growing applications in several areas, including energy storage and biomedical devices -- all without stepping into a lab.

Teaching quantum physics to a computer
An international collaboration led by ETH physicists has used machine learning to teach a computer how to predict the outcomes of quantum experiments.

Read More: Computer News and Computer Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.