Tiny fish make 'eyes' at their killer

August 18, 2013

Small prey fish can grow a bigger 'eye' on their rear fins as a way of distracting predators and dramatically boosting their chances of survival, new scientific research has found.

Researchers from Australia's ARC Centre of Excellence for Coral Reef Studies (CoECRS) have made a world-first discovery that, when constantly threatened with being eaten, small damsel fish not only grow a larger false 'eye spot' near their tail - but also reduce the size of their real eyes.

The result is a fish that looks like it is heading in the opposite direction - potentially confusing predatory fish with plans to gobble them up, says Oona Lönnstedt, a graduate student at CoECRS and James Cook University.

For decades scientists have debated whether false eyespots, or dark circular marks on less vulnerable regions of the bodies of prey animals, played an important role in protecting them from predators - or were simply a fortuitous evolutionary accident.

The CoECRS team has found the first clear evidence that fish can change the size of both the misleading spot and their real eye to maximise their chances of survival when under threat.

"It's an amazing feat of cunning for a tiny fish," Ms Lonnstedt says. "Young damsel fish are pale yellow in colour and have this distinctive black circular 'eye' marking towards their tail, which fades as they mature. We figured it must serve an important purpose when they are young."

"We found that when young damsel fish were placed in a specially built tank where they could see and smell predatory fish without being attacked, they automatically began to grow a bigger eye spot, and their real eye became relatively smaller, compared with damsels exposed only to herbivorous fish, or isolated ones.

"We believe this is the first study to document predator-induced changes in the size of eyes and eye-spots in prey animals."

When the researchers investigated what happens in nature on a coral reef with lots of predators, they found that juvenile damsel fish with enlarged eye spots had an amazing five times the survival rate of fish with a normal-sized spot.

"This was dramatic proof that eyespots work - and give young fish a hugely increased chance of not being eaten.

"We think the eyespots not only cause the predator to attack the wrong end of the fish, enabling it to escape by accelerating in the opposite direction, but also reduce the risk of fatal injury to the head," she explains.

The team also noted that when placed in proximity to a predator the young damsel fish also adopted other protective behaviours and features, including reducing activity levels, taking refuge more often and developing a chunkier body shape less easy for a predator to swallow.

"It all goes to show that even a very young, tiny fish a few millimetres long have evolved quite a range of clever strategies for survival which they can deploy when a threatening situation demands," Ms Lonnstedt says.
-end-
Their paper "Predator-induced changes in the growth of eyes and false eyespots by Oona M. Lonnstedt, Mark I. McCormick and Douglas P. Chivers appears in the latest issue of the journal Scientific reports.

More information:

Oona Lonnstedt, CoECRS and JCU, ph +646 700 21 83 46

Dr Mark McCormick, CoECRS and JCU +61 7 4781 4048 or 0409 371 015

Jenny Lappin, CoECRS, +61 (0)7 4781 4222

Jim O'Brien, James Cook University Media Office, +61 (0)7 4781 4822 or 0418 892449

http://www.coralcoe.org.au/

ARC Centre of Excellence in Coral Reef Studies

Related Coral Reef Articles from Brightsurf:

Was Hong Kong once a coral reef paradise?
Researchers from The University of Hong Kong's School of Biological Sciences and The Swire Institute of Marine Science, have for the first time investigated the historical presence of coral communities in the Greater Bay Area, revealing a catastrophic range collapse and loss of diversity that occurred in the last several decades.

Angels in disguise: Angelfishes hybridize more than any other coral reef species
A new study highlights the remarkably high incidence of and tendency toward hybridisation in the angelfish family (even between divergent species), more so than in any other group of coral reef fishes.

Dimethylsulfoniopropionate concentration in coral reef invertebrates
New research highlights the effect of benthic assemblages on the sulfur metabolism of coral and giant clam species.

Meeting multiple management goals to maximize coral reef health
While management strategies can be effective at achieving reef fisheries' conservation goals, a new study reveals how increased human pressure makes conservation of coral reef biodiversity truly difficult to achieve.

Ocean deoxygenation: A silent driver of coral reef demise?
Authors of a new study published in Nature Climate Change say the threat of ocean deoxygenation has largely been ignored and asks the question: 'Are our coastal coral reefs slowly suffocating?'

Scientists say it is time to save the red sea's coral reef
An international group of researchers led by Karine Kleinhaus, MD, of the Stony Brook University School of Marine and Atmospheric Sciences (SoMAS), calls upon UNESCO to declare the Red Sea's 4000 km of coral reef as a Marine World Heritage Site and recommends additional measures critical for the reef's survival. the study is published in Frontiers in Marine Sciences.

Sounds of the past give new hope for coral reef restoration
Young fish can be drawn to degraded coral reefs by loudspeakers playing the sounds of healthy reefs, according to new research published in Nature Communications.

Healthy mangroves help coral reef fisheries under climate stress
Healthy mangroves can help fight the consequences of climate change on coral reef fisheries, according to a University of Queensland-led study.

Great Barrier Reef island coral decline
A long-term study of coral cover on island groups of the Great Barrier Reef has found declines of between 40 and 50 percent of live, hard corals at inshore island groups during the past few decades.

Longest coral reef survey to date reveals major changes in Australia's Great Barrier Reef
An in-depth look at Australia's Great Barrier Reef over the past 91 years concludes that since 1928 intertidal communities have experienced major phase-shifts as a result of local and global environmental change, leaving few signs that reefs will return to their initial state in the near future.

Read More: Coral Reef News and Coral Reef Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.