Nav: Home

Predicting poverty by satellite with detailed accuracy

August 18, 2016

By combining satellite data and sophisticated machine learning, researchers have developed a technique to estimate household consumption and income. Such data is particularly difficult to obtain in poorer countries, yet it is critical for informing research and policy, and for efforts including resource allocation and targeted intervention in these developing nations. The African continent provides a particularly striking example of limited insights into economic wellbeing. According to World Bank data from 2000 to 2010, 39 out of 59 African countries conducted less than two surveys substantial enough to result in poverty measures. Surveys are costly, infrequent, and cannot always reach countries or regions within countries, for instance, due to armed conflict. Recent studies show that satellite data capturing nightlights can be used to predict wealth in a given area; however, nightlight data alone is not effective at differentiating between regions at the bottom end of the income distribution, where satellite images appear uniformly dark. To circumvent this problem, Neal Jean et al. turned their attention to daylight imagery, which offers higher resolution and can capture features such as paved roads and metal roofs, markers that can help distinguish poor and ultra-poor regions. The researchers then developed a sophisticated learning algorithm that categorizes these features. Several different validation methods reveal a high level of accuracy in their approach. The new model outperforms nightlight models by 81% in predicting poverty in regions under the poverty line, the researchers say, and by 99% in areas that are two times below the poverty line. Importantly, the new method uses publicly available daytime satellite data, can be repeated more frequently than surveys, and is inexpensive to use. Furthermore, initial evidence suggests that a model "trained" in one country can be used in another. In a related Perspective, Joshua Blumenstock discusses recent ways in which researchers have attempted to pinpoint impoverished areas, and how developments by Jean et al. offer a more accurate means to narrow in on the neighborhoods that would benefit most from social programs.
-end-


American Association for the Advancement of Science

Related Data Articles:

Data centers use less energy than you think
Using the most detailed model to date of global data center energy use, researchers found that massive efficiency gains by data centers have kept energy use roughly flat over the past decade.
Storing data in music
Researchers at ETH Zurich have developed a technique for embedding data in music and transmitting it to a smartphone.
Life data economics: calling for new models to assess the value of human data
After the collapse of the blockchain bubble a number of research organisations are developing platforms to enable individual ownership of life data and establish the data valuation and pricing models.
Geoscience data group urges all scientific disciplines to make data open and accessible
Institutions, science funders, data repositories, publishers, researchers and scientific societies from all scientific disciplines must work together to ensure all scientific data are easy to find, access and use, according to a new commentary in Nature by members of the Enabling FAIR Data Steering Committee.
Democratizing data science
MIT researchers are hoping to advance the democratization of data science with a new tool for nonstatisticians that automatically generates models for analyzing raw data.
Getting the most out of atmospheric data analysis
An international team including researchers from Kanazawa University used a new approach to analyze an atmospheric data set spanning 18 years for the investigation of new-particle formation.
Ecologists ask: Should we be more transparent with data?
In a new Ecological Applications article, authors Stephen M. Powers and Stephanie E.
Should you share data of threatened species?
Scientists and conservationists have continually called for location data to be turned off in wildlife photos and publications to help preserve species but new research suggests there could be more to be gained by sharing a rare find, rather than obscuring it, in certain circumstances.
Futuristic data storage
The development of high-density data storage devices requires the highest possible density of elements in an array made up of individual nanomagnets.
Making data matter
The advent of 3-D printing has made it possible to take imaging data and print it into physical representations, but the process of doing so has been prohibitively time-intensive and costly.
More Data News and Data Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: Meditations on Loneliness
Original broadcast date: April 24, 2020. We're a social species now living in isolation. But loneliness was a problem well before this era of social distancing. This hour, TED speakers explore how we can live and make peace with loneliness. Guests on the show include author and illustrator Jonny Sun, psychologist Susan Pinker, architect Grace Kim, and writer Suleika Jaouad.
Now Playing: Science for the People

#565 The Great Wide Indoors
We're all spending a bit more time indoors this summer than we probably figured. But did you ever stop to think about why the places we live and work as designed the way they are? And how they could be designed better? We're talking with Emily Anthes about her new book "The Great Indoors: The Surprising Science of how Buildings Shape our Behavior, Health and Happiness".
Now Playing: Radiolab

The Third. A TED Talk.
Jad gives a TED talk about his life as a journalist and how Radiolab has evolved over the years. Here's how TED described it:How do you end a story? Host of Radiolab Jad Abumrad tells how his search for an answer led him home to the mountains of Tennessee, where he met an unexpected teacher: Dolly Parton.Jad Nicholas Abumrad is a Lebanese-American radio host, composer and producer. He is the founder of the syndicated public radio program Radiolab, which is broadcast on over 600 radio stations nationwide and is downloaded more than 120 million times a year as a podcast. He also created More Perfect, a podcast that tells the stories behind the Supreme Court's most famous decisions. And most recently, Dolly Parton's America, a nine-episode podcast exploring the life and times of the iconic country music star. Abumrad has received three Peabody Awards and was named a MacArthur Fellow in 2011.