Nav: Home

Insights into the dawn of the universe

August 18, 2016

What did the universe look like just after the Big Bang? How did the first stars and galaxies evolve? Seeking answers to these questions, researchers at Bielefeld University are looking way back into the past. With the digital radio telescope LOFAR, they are picking up signals that have taken billions of years to reach us. 'research_tv' is presenting the LOFAR station in Norderstedt. It is being run by Bielefeld University in cooperation with Universität Hamburg.

'With this radio telescope, we can obtain very large and precise charts of galaxies. We can use these data to draw conclusions on how the universe developed,' says Professor Dr. Dominik Schwarz from Bielefeld University's Faculty of Physics. The astrophysicist and his research team are studying how structures evolve in the universe. He planned the LOFAR station in Norderstedt together with Professor Dr. Marcus Brüggen from the Sternwarte in Hamburg [Hamburg observatory] and his team, and it was inaugurated as the sixth LOFAR site in Germany in September 2015. LOFAR is made up of a total of 49 antenna fields spread throughout Europe. Such a wide dissemination permits a far higher resolution than that possible at one single location. This is why partners from Germany, the Netherlands, Poland, Great Britain, France, Sweden, and Ireland have joined together to build the largest radio telescope in the world.

In Norderstedt, the LOFAR station covers roughly the area of a football pitch. Second for second, 192 antenna assemblies are picking up radio waves from space. Each signal is given a precise time stamp so that it can flow together with the signals from the other LOFAR stations to form a total picture. 'We know precisely down to ten nanoseconds when the signals reach here,' according to Schwarz. The stations are synchronized over GPS and the signal is sent to Groningen in the Netherlands via the Forschungszentrum Jülich. Groningen is the location of LOFAR's supercomputer that transforms the data into images.

Instead of capturing waves of visible light, LOFAR measures radio waves. 'Shortly after the Big Bang, before there was structure or a star, the universe consisted of only neutral hydrogen. There was no light, and that is why this epoch is also called the dark ages of the universe,' explains Professor Dr. Marcus Brüggen. 'The only radiation was weak and came from neutral hydrogen. This radiation reaches us in exactly the frequency range in which we are carrying out our measurements.' This frequency range is very low, between 10 and 240 megahertz, and has hardly been explored before. LOFAR stands for Low Frequency Array.

According to Professor Dr. Martin Egelhaaf, the Vice-Rector for Research, the LOFAR project is of great significance for both physics and Bielefeld University. 'It makes an important contribution to internationalizing our university because we are cooperating not only with strong national partners such as Universität Hamburg or the Max Planck Society but also with a very strong partner in the Netherlands.' On the German side, Bielefeld University and Universität Hamburg are joined by, for example, the Max Planck Institute for Radio Astronomy (MPIfR) in Bonn, the Max Planck Institute for Astrophysics (MPA) in Garching, and further universities and observatories. In the Netherlands, ASTRON, the Netherlands Institute for Radio Astronomy, is responsible for the project along with the Universities of Amsterdam, Groningen, Leiden, and Nijmegen.
-end-
Further information is available online at: Contact:
Professor Dr. Dominik Schwarz, Bielefeld University
Faculty of Physics
Telephone: 0521 106-6226
Email: dschwarz@physik.uni-bielefeld.de

Bielefeld University

Related Big Bang Articles:

Big brains or big guts: Choose one
A global study comparing 2,062 birds finds that, in highly variable environments, birds tend to have either larger or smaller brains relative to their body size.
Dark matter may be older than the big bang, study suggests
Dark matter, which researchers believe make up about 80% of the universe's mass, is one of the most elusive mysteries in modern physics.
Cincinnati researchers say early puberty in girls may be 'big bang theory' for migraine
Adolescent girls who reach puberty at an earlier age may also have a greater chance of developing migraine headaches, according to new research from investigators at the University of Cincinnati (UC) College of Medicine.
More bang for the climate buck: study identifies hotspots for adaptation funding
Using a combination of crop models and expertise from farmers and others -- and applying them to our current trajectory of high greenhouse gas emissions -- scientists built a tool to assess climate risk vulnerability to help pinpoint communities in need of support for adaptation and mitigation.
Big data takes aim at a big human problem
A James Cook University scientist is part of an international team that's used new 'big data' analysis to achieve a major advance in understanding neurological disorders such as Epilepsy, Alzheimer's and Parkinson's disease.
Big Bang query: Mapping how a mysterious liquid became all matter
Lehigh University's Rosi Reed presents findings from new Beam Energy Scan at Brookhaven National Lab's Relativistic Heavy Ion Collider that tests the limits of quark-gluon plasma (QGP), the mysterious liquid thought to have existed in the micro-seconds after the Big Bang
Fossil from the Big Bang discovered with W. M. Keck Observatory
A relic cloud of gas, orphaned after the Big Bang, has been discovered in the distant universe by astronomers using the world's most powerful optical telescope, the W.
A bigger nose, a bigger bang: Size matters for ecoholocating toothed whales
A new study sheds light on how toothed whales adapted their sonar abilities to occupy different environments.
Johns Hopkins scientist finds elusive star with origins close to Big Bang
Astronomers have found what could be one of the universe's oldest stars, made almost entirely of materials spewed from the Big Bang.
The 'Big Bang' of Alzheimer's: Scientists ID genesis of disease
Scientists have discovered a ''Big Bang'' of Alzheimer's disease - the precise point at which a healthy protein becomes toxic but has not yet formed deadly tangles in the brain.
More Big Bang News and Big Bang Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Rethinking Anger
Anger is universal and complex: it can be quiet, festering, justified, vengeful, and destructive. This hour, TED speakers explore the many sides of anger, why we need it, and who's allowed to feel it. Guests include psychologists Ryan Martin and Russell Kolts, writer Soraya Chemaly, former talk radio host Lisa Fritsch, and business professor Dan Moshavi.
Now Playing: Science for the People

#538 Nobels and Astrophysics
This week we start with this year's physics Nobel Prize awarded to Jim Peebles, Michel Mayor, and Didier Queloz and finish with a discussion of the Nobel Prizes as a way to award and highlight important science. Are they still relevant? When science breakthroughs are built on the backs of hundreds -- and sometimes thousands -- of people's hard work, how do you pick just three to highlight? Join host Rachelle Saunders and astrophysicist, author, and science communicator Ethan Siegel for their chat about astrophysics and Nobel Prizes.