Nav: Home

Scientists explain why Russian tuberculosis is the most infectious

August 18, 2016

Researchers from the Federal Research and Clinical Centre of Physical-Chemical Medicine, and staff from MIPT's Systems Biology Laboratory, the Research Institute of Phthisiopulmonology and the St. Petersburg Pasteur Institute, conducted a large-scale analysis of the proteins and genomes of mycobacterium tuberculosis strains that are common in Russia and countries of the former Soviet Union and found features that provide a possible explanation for their epidemiological success. A paper detailing the results has been published in the prestigious journal Scientific Reports, part of Nature Publishing Group.

Up until the 20th century, tuberculosis was considered an incurable disease and, despite newly developed methods of curing it at its early stages, the death rate is still high. There are 22 countries, including Russia, in which the infection rate is four times greater than in the rest of the world. It is important to note that the term "tuberculosis" covers a wide range of bacteria strains that cause the disease. Strains of the Beijing family (this genotype was first discovered in Beijing) are prevalent in Russia - every year about 150,000 people are infected with it. To understand the reason behind the "success" of this strain, scientists compared proteins produced by Beijing B0/W148 with a control strain. In order to do this, separated bacterial proteins were enzymatically cleaved into smaller fragments - peptides and their mass and relative abundance were measured precisely using mass spectrometry. After analysing the data collected, the scientists knew which and how many proteins there were in each strain. It was found that in Beijing B0/W148 strains, 266 proteins were differentially abundant compared with the control strain. 57 of them were entirely absent in the study group and 17, on the contrary, were unique to it, others differed quantitatively. Analysis of the functions associated with differing proteins revealed that in Beijing B0/W148 strains there are more proteins producing long-chain fatty acids and less proteins destroying them. Bacteria use these acids to produce mycolic acids, which integrate themselves in the bacterial cell membrane and make it waxy, which is why mycobacteria can survive and even reproduce in macrophages (special human cells that destroy foreign substances). Normally, if a bacterium is "eaten" by a macrophage it dies. However, mycobacterium tuberculosis strains have evolved to reproduce in macrophages and in doing so they hide from the immune system. Mycolic acids not only protect bacteria, but also play a crucial role in synthesizing substances that inhibit macrophages so they stop fighting disease. The features of lipid metabolism that have been discovered could explain the success of Beijing B0/W148 strains in relation to other tuberculosis mycobacteria.
-end-


Moscow Institute of Physics and Technology

Related Bacteria Articles:

Conducting shell for bacteria
Under anaerobic conditions, certain bacteria can produce electricity. This behavior can be exploited in microbial fuel cells, with a special focus on wastewater treatment schemes.
Controlling bacteria's necessary evil
Until now, scientists have only had a murky understanding of how these relationships arise.
Bacteria take a deadly risk to survive
Bacteria need mutations -- changes in their DNA code -- to survive under difficult circumstances.
How bacteria hunt other bacteria
A bacterial species that hunts other bacteria has attracted interest as a potential antibiotic, but exactly how this predator tracks down its prey has not been clear.
Chlamydia: How bacteria take over control
To survive in human cells, chlamydiae have a lot of tricks in store.
Stress may protect -- at least in bacteria
Antibiotics harm bacteria and stress them. Trimethoprim, an antibiotic, inhibits the growth of the bacterium Escherichia coli and induces a stress response.
'Pulling' bacteria out of blood
Magnets instead of antibiotics could provide a possible new treatment method for blood infection.
New findings detail how beneficial bacteria in the nose suppress pathogenic bacteria
Staphylococcus aureus is a common colonizer of the human body.
Understanding your bacteria
New insight into bacterial cell division could lead to advancements in the fight against harmful bacteria.
Bacteria are individualists
Cells respond differently to lack of nutrients.

Related Bacteria Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Bias And Perception
How does bias distort our thinking, our listening, our beliefs... and even our search results? How can we fight it? This hour, TED speakers explore ideas about the unconscious biases that shape us. Guests include writer and broadcaster Yassmin Abdel-Magied, climatologist J. Marshall Shepherd, journalist Andreas Ekström, and experimental psychologist Tony Salvador.
Now Playing: Science for the People

#513 Dinosaur Tails
This week: dinosaurs! We're discussing dinosaur tails, bipedalism, paleontology public outreach, dinosaur MOOCs, and other neat dinosaur related things with Dr. Scott Persons from the University of Alberta, who is also the author of the book "Dinosaurs of the Alberta Badlands".