UTEP researchers innovate brain preservation technique

August 18, 2016

By figuring out how to preserve specimens in the remote locations in which they are found - locations almost completely opposite those of a controlled laboratory or 21st century urban area - researchers from The University of Texas at El Paso have given science one more way to study a wide range of creatures, particularly those threatened by global climate change.

Saving a specimen in alcohol is done all the time, but that process dehydrates the brain and makes it unusable for some scientific investigations that may lead to medical discoveries that can cure disease. A better way of preserving that organ is using formaldehyde, but that requires specialized laboratory equipment, electronics, pumps that push the preservative through the specimen's circulatory system, a fume hood to flush away toxic fumes, and power for it all.

None of that is available when you're on a mountain looking at a rare species and have no idea whether you'll ever see it again, such as chameleon specimens obtained by the UTEP team in the Democratic Republic of the Congo.

"What we did in this study is create a small kit with syringes and some basic solution reagents you can mix up in a bottle and shake for a pretty decent preservative," said Arshad Khan, Ph.D., assistant professor in biological sciences at UTEP. "You can then go in and anesthetize the animal and set up a little field station to embalm the animal in formaldehyde right there."

"The technique is easy enough that someone like myself who has zero expertise previously in neuroscience or neuroanatomical techniques can learn it very quickly and ... without a whole lot of money," said Daniel Hughes, a Ph.D. student in ecology and evolutionary biology who was the lead author on the paper announcing the UTEP team's discovery.

He and the team hopes that people living in or near remote areas flush with biodiversity can take this preservation technique, use it, and then send the specimens to laboratories equipped with the technologies to do the analysis, which can then be digitized and placed online or sent out for the widest access.

"The results of this project sit at an important intersection between field biology and neurological research," said Paul Gignac, Ph.D., assistant professor of anatomy at Oklahoma State University and a co-author of the paper. He added that having proved it is not impossible to preserve brain tissue in remote biodiversity hotspots opens up huge possibilities.

The specimens have almost an endless number of uses that can potentially lead to medical discoveries that can cure disease. For example, medical studies of neurotransmitters like dopamine require more frequent and numerous charting of animal brains. A variety of mental disorders and neurodegenerative disorders like Parkinson's disease are all deficiencies in dopamine, so continued investigation into how brains from a wide variety of creatures use this chemical may unlock much-needed remedies.

The Systems Neuroscience Lab team at UTEP spent hundreds of hours carefully pouring over the quality of the brain tissue under a microscope to see whether that which was preserved by their bare bones technique was comparable to preservation methods used in a laboratory environment equipped with modern technology. And it was.

Their paper concludes, "Transcardial perfusion fixation and long-term brain storage, conducted in remote field conditions with no access to cold storage laboratory equipment, had no observable impact on cytoarchitectural features of lizard brain tissue when compared to lizard brain tissue processed under laboratory conditions."
The study was published in the journal PLOS ONE, a free, open access journal that will allow researches in underdeveloped countries who can't afford a subscription fee for academic publications to benefit from the work, particularly those located in biodiversity hotspots around the world.

The University of Texas at El Paso

Related Brain Articles from Brightsurf:

Glioblastoma nanomedicine crosses into brain in mice, eradicates recurring brain cancer
A new synthetic protein nanoparticle capable of slipping past the nearly impermeable blood-brain barrier in mice could deliver cancer-killing drugs directly to malignant brain tumors, new research from the University of Michigan shows.

Children with asymptomatic brain bleeds as newborns show normal brain development at age 2
A study by UNC researchers finds that neurodevelopmental scores and gray matter volumes at age two years did not differ between children who had MRI-confirmed asymptomatic subdural hemorrhages when they were neonates, compared to children with no history of subdural hemorrhage.

New model of human brain 'conversations' could inform research on brain disease, cognition
A team of Indiana University neuroscientists has built a new model of human brain networks that sheds light on how the brain functions.

Human brain size gene triggers bigger brain in monkeys
Dresden and Japanese researchers show that a human-specific gene causes a larger neocortex in the common marmoset, a non-human primate.

Unique insight into development of the human brain: Model of the early embryonic brain
Stem cell researchers from the University of Copenhagen have designed a model of an early embryonic brain.

An optical brain-to-brain interface supports information exchange for locomotion control
Chinese researchers established an optical BtBI that supports rapid information transmission for precise locomotion control, thus providing a proof-of-principle demonstration of fast BtBI for real-time behavioral control.

Transplanting human nerve cells into a mouse brain reveals how they wire into brain circuits
A team of researchers led by Pierre Vanderhaeghen and Vincent Bonin (VIB-KU Leuven, Université libre de Bruxelles and NERF) showed how human nerve cells can develop at their own pace, and form highly precise connections with the surrounding mouse brain cells.

Brain scans reveal how the human brain compensates when one hemisphere is removed
Researchers studying six adults who had one of their brain hemispheres removed during childhood to reduce epileptic seizures found that the remaining half of the brain formed unusually strong connections between different functional brain networks, which potentially help the body to function as if the brain were intact.

Alcohol byproduct contributes to brain chemistry changes in specific brain regions
Study of mouse models provides clear implications for new targets to treat alcohol use disorder and fetal alcohol syndrome.

Scientists predict the areas of the brain to stimulate transitions between different brain states
Using a computer model of the brain, Gustavo Deco, director of the Center for Brain and Cognition, and Josephine Cruzat, a member of his team, together with a group of international collaborators, have developed an innovative method published in Proceedings of the National Academy of Sciences on Sept.

Read More: Brain News and Brain Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.