Nav: Home

How whip-like cell appendages promote bodily fluid flow

August 18, 2017

Nagoya, Japan - Some cells in the body contain long thin structures called cilia on their surface, which exhibit a whip-like motion that promotes the flow of fluid past the cell. Although these cilia are known to play vital roles in the body, much remains to be understood about their molecular components and the mechanisms by which they work. This is especially true for the cilia on cells that line the ventricles of the brain, which contain cerebrospinal fluid (CSF) that has various functions including cushioning the brain against potentially damaging impacts.

A team at Nagoya University has shed light on this issue by revealing that a molecule called Daple is essential for cilia to adopt an arrangement by which they can beat in one direction at the same time, thereby creating a flow of fluid past the cell exterior. This arrangement on cell surfaces all along the lining of ventricles in the brain ensures the correct flow of CSF, which in turn prevents its accumulation associated with brain swelling known as hydrocephalus.

The team revealed the importance of Daple by creating mutant mice that did not express the Daple protein. By around 20 days after birth, these mice had enlarged heads, similar to that in human hydrocephalus cases. Further studies showed that this was due to the flow of CSF being disrupted.

"We cut out part of the wall of the brain's lateral ventricle and investigated whether fluorescent beads would be propelled along its surface in a particular direction," says Maki Takagishi. "For mice with normal Daple expression, there was consistent movement in one direction, but this was absent in the Daple-knockout mice."

The findings also showed that the lack of Daple stopped cilia all adopting the same orientation on the same side of cells. Without the cilia all beating in the same direction, there would be no directional flow of CSF, leading to its accumulation and subsequent swelling.

According to Masahide Takahashi, "Daple functions through a cytoplasmic structure called microtubules, which are protein filaments involved in various functions including maintaining the overall structure of cells. When Daple is absent, the microtubules are unable to accurately specify the arrangement of structures called basal bodies, from which the cilia develop."

The team's findings should lead to a deeper understanding of diseases caused by the dysfunction of cilia. These include not only hydrocephalus, but also asthma and even female infertility, given the structural and functional similarities of cilia in the trachea and oviduct.

The article "Daple Coordinates Planar Polarized Microtubule Dynamics in Ependymal Cells and Contributes to Hydrocephalus" was published in Cell Reports at http://dx.doi.org/10.1016/j.celrep.2017.06.089.

-end-



Nagoya University

Related Brain Articles:

Study describes changes to structural brain networks after radiotherapy for brain tumors
Researchers compared the thickness of brain cortex in patients with brain tumors before and after radiation therapy was applied and found significant dose-dependent changes in the structural properties of cortical neural networks, at both the local and global level.
Blue Brain team discovers a multi-dimensional universe in brain networks
Using a sophisticated type of mathematics in a way that it has never been used before in neuroscience, a team from the Blue Brain Project has uncovered a universe of multi-dimensional geometrical structures and spaces within the networks of the brain.
New brain mapping tool produces higher resolution data during brain surgery
Researchers have developed a new device to map the brain during surgery and distinguish between healthy and diseased tissues.
Newborn baby brain scans will help scientists track brain development
Scientists have today published ground-breaking scans of newborn babies' brains which researchers from all over the world can download and use to study how the human brain develops.
New test may quickly identify mild traumatic brain injury with underlying brain damage
A new test using peripheral vision reaction time could lead to earlier diagnosis and more effective treatment of mild traumatic brain injury, often referred to as a concussion.
This is your brain on God: Spiritual experiences activate brain reward circuits
Religious and spiritual experiences activate the brain reward circuits in much the same way as love, sex, gambling, drugs and music, report researchers at the University of Utah School of Medicine.
Brain scientists at TU Dresden examine brain networks during short-term task learning
'Practice makes perfect' is a common saying. We all have experienced that the initially effortful implementation of novel tasks is becoming rapidly easier and more fluent after only a few repetitions.
Balancing time & space in the brain: New model holds promise for predicting brain dynamics
A team of scientists has extended the balanced network model to provide deep and testable predictions linking brain circuits to brain activity.
New view of brain development: Striking differences between adult and newborn mouse brain
Spikes in neuronal activity in young mice do not spur corresponding boosts in blood flow -- a discovery that stands in stark contrast to the adult mouse brain.
Map of teenage brain provides evidence of link between antisocial behavior and brain development
The brains of teenagers with serious antisocial behavior problems differ significantly in structure to those of their peers, providing the clearest evidence to date that their behavior stems from changes in brain development in early life, according to new research led by the University of Cambridge and the University of Southampton, in collaboration with the University of Rome Tor Vergata in Italy.

Best Science Podcasts 2017

We have hand picked the best science podcasts for 2017. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: Radiolab

Radiolab Presents: Anna in Somalia
This week, we are presenting a story from NPR foreign correspondent Gregory Warner and his new globe-trotting podcast Rough Translation. Mohammed was having the best six months of his life - working a job he loved, making mixtapes for his sweetheart - when the communist Somali regime perp-walked him out of his own home, and sentenced him to a lifetime of solitary confinement.  With only concrete walls and cockroaches to keep him company, Mohammed felt miserable, alone, despondent.  But then one day, eight months into his sentence, he heard a whisper, a whisper that would open up a portal to - of all places and times - 19th century Russia, and that would teach him how to live and love again. 
Now Playing: TED Radio Hour

Future Consequences
From data collection to gene editing to AI, what we once considered science fiction is now becoming reality. This hour, TED speakers explore the future consequences of our present actions. Guests include designer Anab Jain, futurist Juan Enriquez, biologist Paul Knoepfler, and neuroscientist and philosopher Sam Harris.