Researchers discover new chemical process that could reduce nitrogen oxides from diesel exhaust

August 18, 2017

Chemical engineers at the University of Notre Dame have discovered a catalytic process that could help curb emissions of nitrogen oxides (NOx) from diesel-powered vehicles, a priority air pollutant that is a key ingredient in smog.

Current emission regulations and control systems for diesel engines have reduced pollution at high temperatures. While motorists around the world wait for their vehicles to warm up, a majority of NOx emissions - between 70 and 80 percent - take place during transient and cold-start conditions, impairing air quality.

The study, published in the journal Science, is the culmination of a decade of collaborative research by the University of Notre Dame, Purdue University and Cummins Inc., funded by the National Science Foundation and the Department of Energy, according to William Schneider, co-author of the study.

"Diesel engines power virtually all heavy-duty trucks, and NOx emissions control remains one of the key challenges facing manufacturers and operators," said Schneider, H. Clifford and Evelyn A. Brosey Professor of Engineering in the Department of Chemical and Biomolecular Engineering at Notre Dame.

Schneider led the Notre Dame team and focused on copper-exchanged zeolites, a particular class of catalysts used to promote the conversion of NOx into environmentally benign nitrogen gas. These catalysts "light off," or begin functioning, at temperatures too high to capture a large fraction of the NOx produced. The researchers discovered the key chemical step that limits the performance of these catalysts at low temperature.

"We knew that copper ions trapped in the zeolite pores were responsible for the catalytic reaction, but we did not know what caused the chemical reaction to slow to such an extent at lower temperatures," Schneider said. The team developed sophisticated computer models, performed on supercomputers at Notre Dame's Center for Research Computing and the Environmental Molecular Sciences Laboratory at Pacific Northwest National Laboratory, to track the movement of the copper ions within the zeolite pores. They discovered that the ions were much more mobile than anyone had appreciated, so much so that they were able to swim through the zeolite pores and pair up.

"We hypothesized that this pairing was key to the low-temperature performance," said Schneider. Experiments performed by the Purdue team at the Advanced Photon Source at Argonne National Laboratory proved that this pairing was indeed happening during one step in the overall catalytic process. The team was able to combine the experiments and computations to quantify the pairing and its influence on NOx removal.

"This is a goal that the catalysis community has been striving toward for many years," said Schneider. "This information paves the way to developing catalysts that outperform current formations at lower temperatures, allowing diesel engines to meet stringent emissions regulations. Further, we think we can take advantage of the pairing process for other catalytic reactions beyond NOx removal."
-end-
Co-authors of the study, include Christopher Paolucci, Sichi Li and Hui Li at Notre Dame; Rajamani Gounder, Ishant Khurana, Atish A. Parekh, Arthur J. Shih, John R. Di Iorio, Johnatan D. Albarracin-Caballero, Jeffrey T. Miller, W. Nicholas Delgass and Fabio H. Ribeiro at Purdue University; and Aleksey Yezerets with Cummins Inc., which designs and manufactures diesel and alternative-fuel engines.

University of Notre Dame

Related Nitrogen Articles from Brightsurf:

Chemistry: How nitrogen is transferred by a catalyst
Catalysts with a metal-nitrogen bond can transfer nitrogen to organic molecules.

Illinois research links soil nitrogen levels to corn yield and nitrogen losses
What exactly is the relationship between soil nitrogen, corn yield, and nitrogen loss?

Reducing nitrogen with boron and beer
The industrial conversion of nitrogen to ammonium provides fertiliser for agriculture.

New nitrogen products are in the air
A nifty move with nitrogen has brought the world one step closer to creating a range of useful products -- from dyes to pharmaceuticals -- out of thin air.

'Black nitrogen'
In the periodic table of elements there is one golden rule for carbon, oxygen, and other light elements.

A deep dive into better understanding nitrogen impacts
This special issue presents a selection of 13 papers that advance our understanding of cascading consequences of reactive nitrogen species along their emission, transport, deposition, and the impacts in the atmosphere.

How does an increase in nitrogen application affect grasslands?
The 'PaNDiv' experiment, established by researchers of the University of Bern on a 3000 m2 field site, is the largest biodiversity-ecosystem functioning experiment in Switzerland and aims to better understand how increases in nitrogen affect grasslands.

Reducing reliance on nitrogen fertilizers with biological nitrogen fixation
Crop yields have increased substantially over the past decades, occurring alongside the increasing use of nitrogen fertilizer.

Flushing nitrogen from seawater-based toilets
With about half the world's population living close to the coast, using seawater to flush toilets could be possible with a salt-tolerant bacterium.

We must wake up to devastating impact of nitrogen, say scientists
More than 150 top international scientists are calling on the world to take urgent action on nitrogen pollution, to tackle the widespread harm it is causing to humans, wildlife and the planet.

Read More: Nitrogen News and Nitrogen Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.