Nav: Home

The MOF-based multicolor single-mode microlaser

August 18, 2020

Since different tissues, cells or biochemicals have different (such as optical, thermal and acoustic) responses to different wavelengths of light, a light source with visible to near-infrared (NIR) multi-color output provides the fundamental for multi-modal/multi-dimensional sensing/imaging. On the other hand, the polarization properties of light provide an opportunity for the analysis and processing of scattered light signals and can also help to obtain rich structural information in biological materials. In addition, single-mode micro-nano lasers meet the application requirements of miniaturized photonic devices with high information accuracy, avoiding false signals and overlapping interference of different optical signals, which have the potential to achieve targeted sensing/imaging of various cells and molecules when combined with multi-color output characteristics. If a material can combine the advantages of broadband multi-color output, polarization and single-mode micro-nano lasing, it is very useful for multi-mode miniaturized biochemical sensing or imaging, but there is no report of corresponding materials to date.

In a new paper published in Light Science & Application, a research group led by Professor Guodong Qian from State Key Laboratory of Silicon Materials, Cyrus Tang Center for Sensor Materials and Applications, School of Materials Science and Engineering, Zhejiang University, China have reported the hierarchical assembly of different dye molecules based on homoepitaxy process in a host-guest hybrid metal-organic framework (MOF) micro-resonator to achieve up to three-wavelength single-mode polarized lasing in green, red and NIR. The segmented and oriented assembly of different dye molecules within the MOF microcrystal (named ZJU-68) acting as shortened resonator, help to achieve dynamically controllable multi-color single-mode lasing with a low three-color-lasing threshold of ~1.72 mJ/cm2 and degree of polarization > 99.9%. Furthermore, the resulting three-color single-mode lasing possesses the largest wavelength coverage of ~186 nm (range from ~534 nm to ~720 nm) ever reported. These researchers summarized their ideas:

"It is well known that the spatial confinement effect of the metal-organic framework can greatly reduce the aggregation-caused quenching (ACQ) of organic dye systems. However, when we need to load different dye molecules to broaden the emission band, how should we try to avoid their adverse energy transfer between each other, especially for the lasing system that requires extremely large optical gain? Fortunately, we found one of the solutions, that is the combination of in-situ assembly and epitaxial growth."

"Of course, the size matching between the host framework channels and the dye molecules is also an important factor for the final successful hierarchical assembly. Because we need the prepared dye-loaded crystal segments to not leak the previous dye molecules during the epitaxial growth process." they added.

"These MOF-based hybrid microcrystals can be selectively regionally excited to produce single-mode linearly polarized lasing in green, red, and near-infrared, which will be potential in multi-modal biochemical sensing/imaging and on-chip photon information processing." the researchers forecast.
-end-


Light Publishing Center, Changchun Institute of Optics, Fine Mechanics And Physics, Chinese Academy

Related Molecules Articles:

Water molecules are gold for nanocatalysis
Nanocatalysts made of gold nanoparticles dispersed on metal oxides are very promising for the industrial, selective oxidation of compounds, including alcohols, into valuable chemicals.
Water molecules dance in three
An international team of scientists has been able to shed new light on the properties of water at the molecular level.
How molecules self-assemble into superstructures
Most technical functional units are built bit by bit according to a well-designed construction plan.
Breaking down stubborn molecules
Seawater is more than just saltwater. The ocean is a veritable soup of chemicals.
Shaping the rings of molecules
Canadian chemists discover a natural process to control the shape of 'macrocycles,' molecules of large rings of atoms, for use in pharmaceuticals and electronics.
The mysterious movement of water molecules
Water is all around us and essential for life. Nevertheless, research into its behaviour at the atomic level -- above all how it interacts with surfaces -- is thin on the ground.
Spectroscopy: A fine sense for molecules
Scientists at the Laboratory for Attosecond Physics have developed a unique laser technology for the analysis of the molecular composition of biological samples.
Looking at the good vibes of molecules
Label-free dynamic detection of biomolecules is a major challenge in live-cell microscopy.
Colliding molecules and antiparticles
A study by Marcos Barp and Felipe Arretche from Brazil published in EPJ D shows a model of the interaction between positrons and simple molecules that is in good agreement with experimental results.
Discovery of periodic tables for molecules
Scientists at Tokyo Institute of Technology (Tokyo Tech) develop tables similar to the periodic table of elements but for molecules.
More Molecules News and Molecules Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: The Power Of Spaces
How do spaces shape the human experience? In what ways do our rooms, homes, and buildings give us meaning and purpose? This hour, TED speakers explore the power of the spaces we make and inhabit. Guests include architect Michael Murphy, musician David Byrne, artist Es Devlin, and architect Siamak Hariri.
Now Playing: Science for the People

#576 Science Communication in Creative Places
When you think of science communication, you might think of TED talks or museum talks or video talks, or... people giving lectures. It's a lot of people talking. But there's more to sci comm than that. This week host Bethany Brookshire talks to three people who have looked at science communication in places you might not expect it. We'll speak with Mauna Dasari, a graduate student at Notre Dame, about making mammals into a March Madness match. We'll talk with Sarah Garner, director of the Pathologists Assistant Program at Tulane University School of Medicine, who takes pathology instruction out of...
Now Playing: Radiolab

What If?
There's plenty of speculation about what Donald Trump might do in the wake of the election. Would he dispute the results if he loses? Would he simply refuse to leave office, or even try to use the military to maintain control? Last summer, Rosa Brooks got together a team of experts and political operatives from both sides of the aisle to ask a slightly different question. Rather than arguing about whether he'd do those things, they dug into what exactly would happen if he did. Part war game part choose your own adventure, Rosa's Transition Integrity Project doesn't give us any predictions, and it isn't a referendum on Trump. Instead, it's a deeply illuminating stress test on our laws, our institutions, and on the commitment to democracy written into the constitution. This episode was reported by Bethel Habte, with help from Tracie Hunte, and produced by Bethel Habte. Jeremy Bloom provided original music. Support Radiolab by becoming a member today at Radiolab.org/donate.     You can read The Transition Integrity Project's report here.